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Abstract—The aim of this paper is to propose optimal sampling
strategies for adaptive learning of signals defined over graphs.
Introducing a novel least mean square (LMS) estimation strategy
with probabilistic sampling, we propose two different methods
to select the sampling probability at each node, with the aim of
optimizing the sampling rate, or the mean-square performance,
while at the same time guaranteeing a prescribed learning
rate. The resulting solutions naturally lead to sparse sampling
probability vectors that optimize the tradeoff between graph
sampling rate, steady-state performance, and learning rate of
the LMS algorithm. Numerical simulations validate the proposed
approach, and assess the performance of the proposed sampling
strategies for adaptive learning of graph signals.

Index Terms—Adaptive LMS estimation, graph signal process-
ing, sampling, successive convex approximation.

I. INTRODUCTION

In the last few years, there was a surge of interest in

the development of analysis tools for signals defined over a

graph (or graph signals) in view of the many potential appli-

cations such as big data, biological networks, transportation

networks, sensor networks, [1], [2]. Several analysis methods

for graph signals were already proposed in [2], [3]–[5]. For

instance, the Graph Fourier Transform (GFT) was defined as

the projection of the signal onto the eigenvectors of either the

graph Laplacian, see, e.g., [1], [6], [7], or of the adjacency

matrix, see, e.g. [2], [8]. A very hot topic in GSP is the

development of a sampling theory for graph signals, which

was initially considered in [6], and later extended in [9], [8],

[10], [11], [12]. Then, several reconstruction methods have

been proposed, either iterative as in [13], [14], or batch, as

in [8], [10], [15]. Recently, adaptive strategies for online re-

construction and learning of graph signals were also proposed

in [16]–[18], and paved the way to the development of novel

adaptive GSP tools. In particular, reference [16] proposed an

LMS estimation strategy for adaptive reconstruction of graph

signals from a subset of samples smartly collected over the

graph. The method was then extended to the distributed setting

in [17]. Finally, in [18], the authors proposed a kernel-based

reconstruction framework to handle functions evolving over

possibly time-varying topologies, leveraging spatio-temporal

dynamics of the observed graph signals.

The work of Paolo Di Lorenzo was supported by the “Fondazione Cassa
di Risparmio di Perugia”.

In this paper, we first extend the LMS algorithm of [16] to

incorporate a probabilistic sampling mechanism, where each

node in the graph has an assigned probability to be sampled

at each time instant. We also derive a mean-square analysis

of the proposed method that illustrates the role played by the

sampling strategy on the performance of the LMS algorithm.

Based on this analysis, we formulate alternative optimization

problems that select the sampling probability at each node

in the graph, with the aim of minimizing the overall graph

sampling rate (or maximizing the mean-square performance)

while imposing learning (or sampling) constraints. Several nu-

merical results are reported to validate the theoretical findings,

and illustrate the performance of the proposed strategies.

II. BACKGROUND

We consider a graph G = (V , E), with V = {1, 2, ..., N}
denoting the set of nodes and E = {aij}i,j∈V the set of

weighted edges, such that aij > 0 if nodes j and i are con-

nected trough an edge, or aij = 0, otherwise. The adjacency

matrix A of a graph is defined as A = {aij}, i, j = 1, . . . , N ,

and the Laplacian is given by as L = diag{1T
A} − A. In

the case of undirected graphs, the symmetric Laplacian matrix

is positive semi-definite, with eigendecomposition given by

L = UΛU
H , where U collects all the eigenvectors of L in

its columns, whereas Λ is a diagonal matrix containing the

(non-negative) eigenvalues.

A graph signal x is a mapping from the vertex set V to

the set of complex numbers C. The GFT s of a signal x is

defined as the projection onto the set of eigenvectors U =
{ui}i=1,...,N of the Laplcian [1], i.e.,

s = U
H
x. (1)

The GFT has been defined in alternative ways, see, e.g., [1],

[2], [8]. In this paper, we keep the formulation general such

that one can use the more appropriate definition depending on

the particular case, e.g., the approach based on the Laplacian

matrix if the graph is undirected, or a GFT operator that handle

general directed graphs as, e.g., the one proposed in [2] or [19].

III. ADAPTIVE LMS ESTIMATION OF GRAPH SIGNALS

Let us consider a signal xo = {xoi }
N
i=1

∈ CN defined over

the graph G = (V , E). We assume that the graph signal is

bandlimited, i.e., its spectral content is perfectly localized over
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a limited set of frequency indices F . Under the bandlimited

assumption, from (1), the graph signal xo can be written in

compact form as:

x
o = UFs

o, (2)

where UF ∈ C
N×|F| denoted the subset of columns of

matrix U corresponding to the set of frequency indices F , and

s
o ∈ C|F|×1 is the vector of GFT coefficients of the frequency

support of the graph signal xo. Let us assume that streaming

and noisy observations of the graph signal are sampled over a

time-varying subset of vertices. In such a case, the observation

taken at time n can be expressed as:

y[n] =D[n] (xo + v[n]) = D[n]UFs
o +D[n]v[n] (3)

where D[n] = diag{di[n]}
N
i=1

∈ RN×N , with di[n] denoting

a random sampling binary coefficient, which is equal to 1 if

node i is sampled at time n, and 0 otherwise; and v[n] is

zero-mean, white noise with covariance matrix Cv.

The learning task consists in recovering the graph signal

x
o (or its GFT s

o) from the noisy, streaming, and partial

observations y[n] in (3). Following an LMS approach [20],

the optimal estimate for s
o can be found as the vector that

solves the following optimization problem:

min
s

E ‖y[n]−D[n]UFs‖
2 (4)

where E(·) denotes the expectation operator. The LMS-type

solution proceeds to optimize (4) relying only on instantaneous

information and by means of a steepest-descent procedure.

Thus, letting x̂[n] and ŝ[n] be the current estimates of vector

x
o and s

o, respectively, the LMS algorithm for graph signals

evolves as illustrated in Algorithm 1, where µ > 0 is a

(sufficiently small) step-size, and we have exploited the fact

that D[n] is an idempotent operator. The learning capabilities

of the LMS algorithm in (8) are affected random sampling

operator D[n]. Thus, in the sequel, we will show how the

design of the sampling strategy D[n] affects the reconstruction

capability, the learning rate, and the steady-state performance

of Algorithm 1. Before moving forward, we introduce the

following two assumptions.

Assumption 1 (Independent sampling): The sampling process

{di[t]} is temporally and spatially independent.

Assumption 2 (Small step-size): The step-size µ is sufficiently

small, i.e., higher-order powers of µ can be neglected.

A. Reconstruction Properties

Assuming stationarity of the sampling and observations

random processes {di[n]}
N
i=1

and {y[n]}, the optimal solution

s
o of problem (4) is obtained through the normal equations:

U
H
F diag(p)UFs

o = U
H
F diag(p)E{y[n]}, (5)

where p = (p1, . . . , pN)T ∈ RN represents the sampling

probability vector, with pi = E{di[n]}, i = 1, . . . , N , denoting

the probability that node i is sampled at time n. From (5), it is

clear that reconstruction of so is possible only if the positive

(semi)definite matrix U
H
F diag(p)UF is invertible, i.e., if

λmin

(
U

H
F diag(p)UF

)
> 0, (6)

Algorithm 1: LMS on Graphs

Start with random ŝ[0] and x̂[0] = UF ŝ[0]. Given a suffi-

ciently small step-size µ > 0, for each time n > 0, repeat:

S.1) ŝ[n+ 1] = ŝ[n] + µUH
FD[n] (y[n]− x̂[n])

S.2) x̂[n+ 1] = UF ŝ[n+ 1]
(8)

where λmin(Y) is the minimum eigenvalue of matrix Y. Also,

let us denote the expected sampling set by

S = {i = 1, . . . , N | pi > 0},

i.e., the set of nodes of the graph that are sampled with a

probability greater than zero. Thus, a necessary condition to

have (6) is that

|S| ≥ |F|,

i.e., the number of nodes sampled in expectation must be larger

than equal to the graph signal bandwidth. Proceeding as in

[17], it is possible to prove that matrix U
H
F diag(p)UF is

invertible if ∥∥DSc

UF

∥∥
2
< 1, (7)

where Sc is the complement of the expected sampling set,

i.e., Sc = {i = 1, . . . , N | pi = 0}; and DSc

= diag{1Sc

},

where 1Sc

is the set indicator vector, whose i-th entry is

equal to one, if i ∈ Sc, or zero otherwise. As shown in [10],

condition (7) implies that there are no F -bandlimited signals

that are perfectly localized over the set Sc. Proceeding as in

[10], [16], this condition can be proved to be necessary and

sufficient for graph signal reconstruction. However, differently

from previous works on sampling of graph signals, see, e.g.,

[6], [8]–[11], [13], [16], condition (7) depends on the expected

sampling set. As a consequence of condition (7), the proposed

LMS algorithm with probabilistic sampling does not need to

collect all the data necessary to reconstruct one-shot the graph

signal at each iteration (i.e., the graph signal can be always

downsampled at each observation), but can learn acquiring

the needed information over time. The only important thing

required by condition (7) is that a sufficiently large number

of nodes is sampled in expectation (i.e., they belong to the

expected sampling set S).

B. Mean-Square Performance

In the next theorem, we illustrate how the sampling proba-

bility vector p affects the mean-square behavior of Algorithm

1.

Theorem 1: Assume model (3) and Assumption 1 hold. Then,

for any initial condition, the LMS algorithm(8) is mean-square

stable if the step-size µ and the sampling probability vector p

are chosen to satisfy (7) and

0 < µ <
2λmin

(
U

H
F diag(p)UF

)

λ2
max

(
U

H
F diag(p)UF

) . (9)
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Then, if condition (9) holds, we have

MSD = lim
n→∞

sup
n

E‖x̂[n]− x
o‖2 (10)

=
µ

2
Tr

[(
U

H
F diag(p)UF

)−1

U
H
F diag(p)CvUF

]
+O(µ2).

Finally, under Assumption 2, the learning rate of Algorithm 1

is well approximated by

α = 1− µλmin

(
U

H
F diag(p)UF

)
. (11)

Proof. The proof can be found in [21].

Remark: The learning rate α ∈ (0, 1] in (11) determines the

convergence speed of E‖x̂[n]−x
o‖2 towards its steady-state,

i.e., the exponential decay of the transient component. Smaller

values of α lead to faster convergence of the algorithm.

IV. OPTIMAL GRAPH SAMPLING STRATEGIES

The results of Sec. III-B illustrates how the performance

of the LMS algorithm strongly depends on the sampling

probability vector p [cf. (10) and (11)]. The goal of this

section is to develop optimal probabilistic sampling strategies

for adaptive learning of graph signals via the LMS algorithm

in (8). In the sequel, exploiting Assumption 2, we neglect the

term O(µ2) in (10), and (11) well represents the learning rate

the LMS algorithm. We consider the two alternative problem

formulations, which aim at selecting the sampling probability

vector p under different optimization criteria.

A. Minimum sampling rate with learning constraints

The first sampling strategy aims at selecting the probability

vector p that minimizes the overall sampling rate over the

graph, while guaranteing a target performance of the LMS

algorithm in terms of MSD in (10) and of learning rate in

(11). The optimization problem can be cast as:

min
p

1
T
p

subject to

λmin

(
U

H
F diag(p)UF

)
≥

1− ᾱ

µ

Tr

[(
U

H
F diag(p)UF

)−1

U
H
F diag(p)CvUF

]
≤

2γ

µ

0 ≤ p ≤ p
max

(12)

The first constraint imposes that the learning rate of the algo-

rithm is larger than a desired value, i.e., α in (11) is smaller

than a target value, say, e.g., ᾱ ∈ (0, 1). Note that the first

constraint on the learning rate also guarantees adaptive signal

reconstruction [cf. (6)]. The second constraint guarantees a

target mean-square performance, i.e., the MSD in (10) must

be less than or equal to a prescribed value, say, e.g., γ > 0.

Finally, the last constraint limits the probability vector to lie in

the box pi ∈ [0, pmax

i ], for all i, with 0 ≤ pmax

i ≤ 1 denoting

an upper bound on the sampling probability at each node that

might depend on external factors such as, e.g., limited energy,

processing, and/or communication resources, failures, etc.

Unfortunately, problem (12) is non-convex, due to the

presence of the non-convex constraint on the MSD. To handle

the non-convexity of (12), one might use successive convex

approximation methods with provable convergence guarantees

to local optimal solutions of (12) [22]. However, in this

paper, we follow a different approach. In particular, under

Assumption 2 [i.e., neglecting the terms O(µ2)], we exploit

an upper bound of the MSD function in (10), given by:

MSD(p) ≤ MSD(p) ,
µ

2

Tr
(
U

H
F diag(p)CvUF

)

λmin

(
U

H
F diag(p)UF

) , (13)

for all p ∈ RN . Of course, replacing the MSD function (10)

with the bound (13), the second constraint of problem (12)

is always satisfied. Thus, exploiting the bound in (13), we

formulate a surrogate optimization problem for the selection

of the probability vector p, which can be cast as:

min
p

1
T
p

subject to

λmin

(
U

H
F diag(p)UF

)
≥

1− ᾱ

µ

Tr
(
U

H
F diag(p)CvUF

)

λmin

(
U

H
F diag(p)UF

) ≤
2γ

µ

0 ≤ p ≤ p
max

(14)

Problem (14) is now a convex optimization problem. Indeed,

the second constraint of problem (14) involves the ratio of a

convex function over a concave function. Since both functions

at numerator and denumerator of (13) are differentiable and

positive for all p satisfying the first and third constraint of

problem (14), the function is pseudo-convex [23], and all its

sub-level sets are convex sets. This argument, coupled with

the convexity of the objective function and of the sets defined

by the first and third constraints, proves the convexity of

the problem (14), whose global solution can be found using

efficient numerical tools [24].

B. Minimum MSD with sampling and learning constraints

The second sampling strategy aims at selecting the prob-

ability vector p that minimizes the MSD in (10), while

imposing that the learning rate of the algorithm is larger than a

desired value, and the sampling rate is limited by some budget

constraint. The optimization problem can then be cast as:

min
p

Tr

[(
U

H
F diag(p)UF

)−1

U
H
F diag(p)CvUF

]

s.t. p ∈ C ,





λmin

(
U

H
F diag(p)UF

)
≥

1− ᾱ

µ
0 ≤ p ≤ p

max

1
T
p ≤ P

(15)

where P ∈ [0,1T
p
max] is the budget on the sampling rate.

Problem (15) has a convex feasible set C, but it is non-convex

because of the MSD objective function. Again, one might use
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Sampling Strategy: Dinkelbach method for Problem (16)

Set k = 1. Start with p[1] ∈ C and β[1] = ψ(p[1]). Then, for

k ≥ 1, repeat the following steps:

S.1) p[k + 1] = arg
p∈C

min h(p, β[k])

S.2) If h(p[k + 1], β[k]) = 0, STOP and p
∗ = p[k + 1];

otherwise, β[k + 1] = ψ(p[k + 1]), k = k + 1, and go to S.1

successive convex approximation methods to find local optimal

solutions of (15) [22]. However, as done before, we exploit

the upper bound in (13) to formulate a surrogate optimization

problem, which reads as:

min
p∈C

Tr
(
U

H
F diag(p)CvUF

)

λmin

(
U

H
F diag(p)UF

) . (16)

Problem (16) is a convex/concave fractional program [25], i.e.,

a problem that involves the minimization of the ratio of a

convex function over a concave function, both defined over the

convex set C. In particular, as mentioned before, the objective

function of (16) is pseudo-convex in C [23]. As a consequence,

any local minimum of problem (16) is also a global minimum

[25]. To find a solution of the problem (16), in this paper we

consider a method based on the Dinkelbach algorithm [26],

which converts the fractional problem (16) into the iterative

solution of a sequence of parametric problems as:

min
p∈C

h(p, β) = f(p)− βg(p) (17)

with β denoting the free parameter to be selected, and

f(p) = Tr
(
U

H
F diag(p)CvUF

)
, (18)

g(p) = λmin

(
U

H
F diag(p)UF

)
. (19)

Letting ψ(p) = f(p)/g(p), and noting that h(p∗, ψ(p∗)) =
0 at the optimal value p

∗, the Dinkelbach method proceeds

as described in the Sampling Strategy 2, and is guaranteed

to converge to global optimal solutions of the approximated

problem (16), see, e.g., [25], [26].

In the sequel, we will illustrate numerical results assessing

the performance of the proposed LMS algorithm with proba-

bilistic sampling strategies (14) and (16).

V. NUMERICAL RESULTS

Let us consider an application to a real network: the

IEEE 118 Bus Test Case, which represents a portion of the

American Electric Power System (in the Mid-western US) as

of December 1962. The graph is composed of 118 nodes,

and its topology is illustrated in Fig. 1. The dynamics of the

power generators give rise to smooth graph signals, so that

the bandlimited assumption is justified in approximate sense.

Thus, we assume that the spectral content of the graph signal

is limited to the first ten eigenvectors of the Laplacian matrix

of the graph in Fig. 1, i.e., |F| = 10. The observation noise in

(3) is zero-mean, Gaussian, with a diagonal covariance matrix,
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Fig. 1: IEEE 118 bus test case: Graph topology, and optimal

sampling probabilities obtained from (16) for ᾱ = 0.99.
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Fig. 2: Optimal probabilities and noise variance, obtained from

(16) for different values of ᾱ and p
max.

where each element is illustrated in Fig. 2 (bottom). The other

parameters are: µ = 0.1, and p
max = 1. An example of

optimal probabilistic sampling, obtained solving problem (16)

with ᾱ = 0.99 and P = 120, is illustrated in Fig. 1, where the

the color (in gray scale) of the vertexes denotes the sampling

probability. As we can notice from Fig. 1, the method selects

a very sparse probability vector in order to minimize the MSD

and guarantee the required learning rate.

As a further example, in Fig. 2 (A , B, and C), we report

the optimal probability vector obtained using the Sampling
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Sampling strategy in (14)

Max−Det strategy [16]

Leverage score sampling [15]

Random sampling

Fig. 3: Graph sampling rate versus ᾱ, for different strategies.

Strategy 2 for different values of ᾱ (0.99 for case A, 0.98

for B and C) and upper bound vectors p
max. In all cases, we

have checked that the constraint on the learning rate is attained

strictly. From Fig. 2 (A and B), as expected, we notice how

the method enlarges the expected sampling set if we require a

faster learning rate (i.e., a smaller value of ᾱ), or if there are

strict bounds on the probability to sample set of “important”

nodes (B and C). Also, from Fig. 2, it is clear how the method

avoids to assign large sampling probabilities to nodes having

large noise variances, in order to keep the MSD as small as

possible, while still guaranteing the target learning rate.

Finally, we compare the sampling strategy in (14) with

some established sampling methods for graph signals, namely,

the leverage score sampling from [15], the Max-Det greedy

strategy from [16], and the (uniformly) random sampling.

For each strategy, we keep adding nodes to the sampling set

according to the corresponding criterion until the constraints

on the learning rate and the MSD in (14) are satisfied. Then,

in Fig. 3, we report the behavior of the graph sampling

rate versus the learning parameter ᾱ in (14), obtained using

the four aforementioned strategies. The other parameters are:

µ = 0.1, p
max = 1, and γ = −25 dB. The results for

the the random sampling strategies are averaged over 200

independent simulations. As expected, from Fig. 3, we notice

how the graph sampling rate increases at lower values of

ᾱ, i.e., increasing the learning rate of the algorithm, for all

strategies. Furthermore, we can notice the large gain on the

graph sampling rate obtained by the proposed strategy with

respect to other methods available in the literature.

VI. CONCLUSIONS

In this paper we have introduced a novel LMS strategy for

learning graph signals based on a probabilistic sampling mech-

anism. Then, we have formulated two convex optimization

problems to select the sampling probability at each node: the

first one aims at minimizing the graph sampling rate while

imposing learning constraints, whereas the second strategy

optimizes the mean-square performance while constraining

the graph sampling rate and the learning rate of the LMS

algorithm. Numerical results illustrate the performance of the

proposed methods for adaptive learning of graph signals.
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