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Abstract—This work proposes distributed recursive least
squares (RLS) strategies for adaptive reconstruction and learning
of signals defined over graphs. First, we introduce a centralized
RLS estimation strategy with probabilistic sampling, and we pro-
pose a sparse sensing method that selects the sampling probability
at each node in the graph in order to guarantee adaptive signal
reconstruction and a target steady-state performance. Then, a
distributed RLS strategy is derived and is shown to be convergent
to its centralized counterpart. The performed numerical tests
show the performance of the proposed adaptive method for
distributed learning of graph signals.

Index Terms—Recursive least squares estimation, graph signal
processing, sampling, adaptive networks.

I. INTRODUCTION

Nowadays, there is an increasing demand to process signals

living in irregular domains. Several examples abound in the

context of sensor networks, social media, big data or biological

networks. The underlying structure of data is often represented

by a graph and the signal living on top of this graph is defined

as a graph signal. Graph signal processing (GSP) [1]–[3] is

a promising area that aims to develop novel analysis and

processing tools for signals defined over graphs. For instance,

there exists a specific definition for the graph Fourier transform

(GFT), where the graph signal is projected onto the eigenvec-

tors of either the Laplacian [1], [4], [5], or of the adjacency

matrix [2], [6]. Several processing methods for graph signals

were proposed in [2], [7]–[10], and a fundamental aspect is

their dependence from the graph topology.

A central topic in GSP is the development of a sampling

theory, whose aim is to reconstruct a graph signal from a

subset of its samples. An important contribution is given by

[4], later extended in [11] and, very recently, in [6], [12],

[13], [14]. Based on the developed sampling theory, several

reconstruction methods were proposed, either iterative as in

[13], [15], or batch, as in [6], [12]. On the other hand, [16]–

[18] propose adaptive strategies for online graph signal recon-

struction and learning. Specifically, [16] proposed an LMS

estimation strategy enabling adaptive learning and tracking

from a limited number of smartly sampled observations, which

The work of Paolo Di Lorenzo was supported by the “Fondazione Cassa
di Risparmio di Perugia”.

was then extended to the distributed setting in [17]. In [18],

the authors proposed a kernel-based reconstruction framework

to accommodate time-evolving signals over possibly time-

evolving topologies, leveraging spatio-temporal dynamics of

the observed data.

In this work we propose the following contributions: (a)

We propose a centralized RLS reconstruction strategy that

collects data over the graph through a probabilistic sampling

mechanism, where each node in the graph has an assigned

probability to be sampled at each time instant; (b) We formu-

late an optimization problem to select the sampling probability

at each node in the graph, enforcing sparsity from one side,

while also guaranteeing signal reconstruction and a prescribed

steady-state performance; (c) we derive a distributed RLS

strategy exploiting the alternating direction method of multi-

pliers (ADMM) [19], which is shown to be convergent to the

centralized method. Numerical results validate our findings,

and illustrate the performance of the proposed strategies.

II. BACKGROUND ON GSP

Consider an undirected graph G = (V , E) composed of a set

of N nodes V = {1, 2, ..., N}, and a set of (weighted) edges

E = {aij}i,j∈V , such that aij > 0, if nodes j and i share

a link, or aij = 0, otherwise. The graph adjacency matrix

and the graph Laplacian are respectively A = {aij}, i, j =
1, . . . , N and L = diag(1T

A)−A. Since G is undirected,

the graph Laplacian can be eigendecomposed as L=UΛU
H ,

where U contains the eigenvectors in its columns, whereas Λ

is a diagonal matrix containing the non-negative eigenvalues.

A signal x defined over a graph G is a mapping from the

vertex set to the set of complex numbers, i.e. x : V → C.

In several applications like brain signal monitoring, big data,

or biological networks [1], the signal x admits an exact (or

approximate) compact representation, i.e., it can be cast as:

x = Us (1)

where s is exactly (or approximately) sparse. The GFT s of

a signal x is defined as the projection onto the set of vectors

{ui}i=1,...,N [1], i.e., s = U
Hx. Alternative definitions for

the GFT are proposed in [1], [2], [6]. In this paper, we follow

the approach from [1], but the theory can be easily extended

to general graph shift operators.
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III. RLS ESTIMATION OF GRAPH SIGNALS

We consider a bandlimited graph signal xo = {xo
i }

N
i=1

∈
CN , with graph spectral content perfectly localized only over

a limited set of frequency indices F . Assuming the frequency

support F to be known a priori, from (1), the graph signal xo

can be cast as the linear model:

xo = UFs
o, (2)

where UF ∈ CN×|F| denotes the subset of columns of matrix

U in (1) corresponding to the frequency set F , and so ∈
C|F|×1 collects the coefficients of the GFT of xo over the set

F . The graph signal is then sampled over a time-varying subset

of vertices, thus resulting in streaming and noisy observations

available for processing at each time instant t, which can be

expressed as:

y(t) =D(t) (xo + v(t)) = D(t)UFs
o +D(t)v(t) (3)

where D(t) = diag{di(t)}Ni=1
, with di(t) ∈ {0, 1} denoting

a Bernoulli random variable, which is equal to 1 if node i is

sampled at time t, and 0 otherwise; and v(t) is zero-mean

observation noise, assumed to be spatially and temporally

independent, with covariance matrix Cv = diag(σ2

1
, . . . , σ2

N ).
The learning goal consists in recovering the GFT vector so

from the partial and streaming observations y(t) in (3). Using

an RLS approach [20], the optimal (centralized) estimate for

so at time t, say, ŝc(t), is given by the solution of the following

optimization problem:

min
s

t∑

τ=1

βt−τ
∥∥D(τ)(y(τ) −UFs)

∥∥2
C

−1

v

+ βt‖s‖2
Π

(4)

where 0 ≪ β ≤ 1 is the exponential forgetting factor, ‖s‖2
Π

=
sHΠs with Π � 0 denoting a regularization matrix, and we

have exploited the fact that D(t) is an idempotent matrix for

all t. Typically, Π = δI, where δ > 0 is small [20]. Solving

(4) and using (2), the optimal estimate for the graph signal xo

at time t is given by:

x̂c(t) = UF ŝc(t) = UFΨ
−1(t)ψ(t) (5)

where

Ψ(t) =

t∑

τ=1

βt−τ
U

H
FD(τ)C−1

v UF + βt
Π, (6)

ψ(t) =

t∑

τ=1

βt−τ
U

H
FD(τ)C−1

v y(τ). (7)

The regularization term in (6) avoids invertibility issues in

(5), especially at early values of t. Given the structure of the

recursion of Ψ(t) and ψ(t) in (6)-(7), we obtain

Ψ(t) = βΨ(t− 1) +U
H
FD(t)C−1

v UF (8)

ψ(t) = βψ(t− 1) +U
H
FD(t)C−1

v y(t) (9)

with Ψ(0) = Π, which recursively update both Ψ(t) and

ψ(t) given their previous values. Thus, the main steps of

the algorithm, named RLS on graphs, are illustrated in Al-

gorithm 1, which has computational complexity of the order

of O(|F|3), due to the presence of the inverse operation

Algorithm 1: RLS on Graphs

Start with random ψ(0), and Ψ(0) = Π. For t > 0, repeat:

Ψ(t) = βΨ(t− 1) +U
H
FD(t)C−1

v UF

ψ(t) = βψ(t− 1) +U
H
FD(t)C−1

v y(t)

x̂c(t) = UFΨ
−1(t)ψ(t)

(10)

Ψ
−1(t) in (10). Since typically we have |F| ≪ N , the cost

O(|F|3) is often affordable. The performance of the RLS

method in (10) heavily depend on the properties of the random

sampling operator D(t). Thus, in the sequel, we will show

how to optimally design the graph sampling strategy in order

to guarantee graph signal reconstruction and a target steady-

state performance of the proposed RLS algorithm.

A. Mean-Square Performance

The study of the mean-square performance of RLS adaptive

filters is rather challenging [20]. To allow a tractable analysis,

we will hinge on the following ergodicity assumption.

Assumption 1 (Ergodicity): ∃t0 such that for all t > t0,

Ψ(t) in (6) can be replaced by Ψ = EΨ(t).
Assumption 1 states that the time average of a random

process can be replaced by its expected value, for t suffi-

ciently large. This assumption is very common for RLS-type

algorithms, see, e.g., [20], and leads to good approximations

in practice. Thus, under Assumption 1, the steady state ex-

pression for matrix Ψ(t) can be approximated as:

lim
t→∞

Ψ(t) ≃ lim
t→∞

EΨ(t) =
1

1− β
U

H
F diag(p)C−1

v UF

(11)

where p = (p1, . . . , pN )T ∈ RN represents the sampling

probability vector, with pi = E{di(t)}, i = 1, . . . , N , denoting

the probability that node i samples at time t. From (5) and (11),

we deduce that asymptotic reconstruction of xo is possible

only if the positive (semi)definite matrix U
H
F diag(p)C−1

v UF

is invertible (or full rank), i.e., iff

λmin

(
U

H
F diag(p)C−1

v UF

)
> 0, (12)

where λmin(Y) is the minimum eigenvalue of matrix Y. Let

S = {i = 1, . . . , N | pi > 0}

be the expected sampling set (i.e., the set of nodes of the

graph that are sampled with a probability greater than zero).

Then, condition (12) holds true for a large enough expected

sampling set, i.e., if data is collected from a sufficiently

large set of nodes with a probability greater than zero. In

particular, a necessary condition to guarantee condition (12)

is that |S| ≥ |F|, i.e., the number of nodes that are sampled

with a probability greater than zero must be greater than or

equal to the graph signal bandwidth.

Finally, we illustrate how the sampling probability vector p

affects the mean-square behavior of Algorithm 1. The results

are summarized in the following Theorem.
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Theorem 1: Assume model (3), Assumption 1, and condition

(12) hold. Then, the RLS strategy (10) is mean-square stable,

with mean-square deviation (MSD) given by

MSD = lim
t→∞

sup
t

E‖x̂c(t)− x
o‖2

=
1− β

1 + β
Tr

[(
U

H
F diag(p)C−1

v UF

)−1
]
. (13)

Proof. The proof is similar to derivations in [20], [21, eq. (29)],

and is omitted due to lack of space.

B. Optimal Sampling Strategies

The mean-square analysis in Sec. III.A illustrates how the

mean-square performance of algorithm (10) strongly depends

on the sampling probability vector p [cf (13) and (12)]. Then,

following a sparse sensing approach [22], [23], the goal of

this section is to develop optimal sampling strategies aimed

at selecting a sparse probability vector p that enables graph

signal reconstruction from its samples, while guaranteing a

target value of mean-square performance. To this aim, we

propose the following design for the sampling strategy:

min
p

1
Tp

s.t. Tr

[(
U

H
F diag(p)C−1

v UF

)−1
]
≤ γ

1 + β

1− β

0 ≤ p ≤ pmax

(14)

The objective function in (14) enforces sparsity by minimizing

the overall graph sampling rate. From (13), the first constraint

in (14) imposes a target value of MSD less than or equal to a

constant γ > 0. Finally, the last constraint limits p to lie in the

box 0 ≤ p ≤ pmax, with pmax = {pmax

i }Ni=1
≤ 1 denoting an

upper bound on the sampling probabilities that might depend

on external factors such as, e.g., limited energy, processing,

and/or communication resources, failures, etc. It is important

to remark that, differently from other sparse sensing methods

proposed for batch estimation strategies [22], [23], the problem

in (14) is convex, and its global solution can be found using

efficient numerical tools [24].

IV. DISTRIBUTED RLS ESTIMATION OF GRAPH SIGNALS

In many real systems, data are not available at a single

processing unit, since they are collected by separate agents of

a distributed network. Furthermore, sending local information

to a fusion center might be either impossible or not efficient,

because of the large volume of data and dimension of the

network, random impairments, latency and energy constraints,

and/or privacy issues [21], [25], [26]. Motivated by these

observations, in this section we extend the RLS strategy in

Algorithm 1 to a distributed setting, where the nodes of the

graph are connected through a sparse communication network.

The topology of the communication graph does not necessarily

coincide with that of the graph used to process the data. Let

B = {bij}, i, j = 1, . . . , N be the adjacency matrix of the

communication graph. To ensure the diffusion of information

over the network, we assume the following.

Assumption 2 (Topology): The communication graph is

symmetric and connected; i.e., there exists an undirected path

connecting any two vertices of the network.

To derive distributed solution methods for problem (4), let

us introduce local copies {si}Ni=1
of the global variable s, and

recast problem (4) in the following equivalent form:

min
{si}N

i=1

N∑

i=1

t∑

τ=1

βt−τ d̃i(t)(yi(t)− u
H
F ,isi)

2 +
βt

N

N∑

i=1

‖si‖
2

Π

s.t. si = sj for all i ∈ V , j ∈ Ni, (15)

where Ni = {j ∈ V | bij > 0} is the neighborhood of agent i,

uH
F ,i is the i-th row of matrix UF , and d̃i(t) = di(t)/σ

2

i .

Proposition 1: Let {ŝi(t)}Ni=1
be the optimal solutions of

problem (15). Under Assumption 2, problems (4) and (15) are

equivalent, i.e., ŝi(t) = ŝc(t) for all i ∈ V and t ≥ 0.

Letting s = {si}Ni=1
and λ = {λij}

j∈Ni

i∈V , the augmented

Lagrangian for problem (15) writes as:

La (s,λ) =

N∑

i=1

t∑

τ=1

βt−τ d̃i(τ)(yi(τ)− u
H
F,isi)

2 +
βt

N

N∑

i=1

‖si‖
2

Π

+

N∑

i=1

∑

j∈Ni

λT
ij(si − sj) +

̺

4

N∑

i=1

∑

j∈Ni

‖si − sj‖
2, (16)

where ̺ > 0 is a positive regularization coefficient. Since

the augmented Lagrangian function in (16) is strictly convex

for all t, we can employ the alternating direction method of

multipliers (ADMM) to solve problem (15), see, e.g., [19].

Letting k be the iteration index of ADMM, the first step

updates the local estimates as:

ŝ(t, k + 1) = argmin
s

La (s,λ(t, k)) . (17)

From the separable structure of (16), problem (17) can be split

into N subproblems:

ŝi(t, k + 1) = argmin
si

t∑

τ=1

βt−τ d̃i(τ)(yi(τ)− u
H
F,isi)

2

+
βt

N
‖si‖

2

Π
+

1

2

∑

j∈Ni

[
λij(t, k)− λji(t, k)

]T
si

+
̺

2

∑

j∈Ni

‖si − ŝj(t, k)‖
2 (18)

Since each local subproblem corresponds to an unconstrained

quadratic minimization, they all admit closed-form solutions

ŝi(t, k + 1) =
(
Ψi(t) + ̺|Ni|I

)−1
[
ψi(t) + ̺

∑

j∈Ni

ŝj(t, k)

−
1

2

∑

j∈Ni

(λij(t, k)− λji(t, k))

]
, (19)

where, setting Ψi(0) = Π, we have

Ψi(t) = βΨi(t− 1) + d̃i(t)uF,iu
H
F,i, (20)

ψi(t) = β ψi(t− 1) + d̃i(t)yi(t)uF ,i. (21)
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Algorithm 2: Distributed RLS on Graphs

Start with {ψi(0)}
N
i=1

, {si(0, 0)}Ni=1
, {λij(0, 0)}

j∈Ni

i∈V chosen

at random, and set {Ψi(0)}
N
i=1

= Π/N , and ̺ > 0.

for t > 0 do

All i ∈ V : update Ψi(t) and ψi(t) using (20) and (21);

for k = 0, . . . , K − 1 do

All i ∈ V : transmit λij(t, k) to each j ∈ Ni;

All i ∈ V : update ŝi(t, k + 1) using (19);

All i ∈ V : transmit ŝi(t, k + 1) to neighbors in Ni;

All i ∈ V : update {λij(t, k + 1)}j∈Ni
using (22);

end

end

Finally, the second step of the ADMM algorithm updates the

Lagrange multipliers as:

λij(t, k + 1) = λij(t, k) +
̺

2

(
ŝj(t, k + 1)− ŝi(t, k + 1)

)
,

(22)

for i ∈ V , j ∈ Ni. Recursions (19) and (22) constitute the

ADMM-based Distributed RLS algorithm (DRLS), whereby

all sensors i ∈ V update their local estimate ŝi and their

multipliers {λij}j∈Ni
, which can be arbitrarily initialized.

Then, all the steps of the distributed RLS strategy for adaptive

reconstruction of graph signals are summarized in Algorithm

2, which also describes communications of multipliers and

local estimates taking place within local neighborhoods. By

direct application of [19, Sec. 2.2.1], the following conver-

gence result applies to Algorithm 2.

Proposition 2: For arbitrarily initialized {λij(t, 0)}
j∈Ni

i∈V ,

si(t, 0) and ̺ > 0; the local estimates ŝi(t, k) generated by

Algorithm 2 reach consensus as k → ∞; i.e.,

lim
k→∞

ŝi(t, k) = ŝc(t), for all i ∈ V . (23)

Proposition 2 asserts that Algorithm 2 yields a sequence of

local estimates that converges to the global estimate produced

by Algorithm 1, as k → ∞, or, pragmatically for large

enough k. However, when the network is deployed to track

a time-varying graph signal, one cannot afford large delays

in-between consecutive sensing instants. In this case, we can

run a single consensus iteration per acquired observation, i.e.,

K = 1 in Algorithm 2, thus making the method suitable for

operation in nonstationary environments.

Remark 1: In this work, we assume that processing and

communication graphs have in general distinct topologies. We

remark that both graphs play an important role in Algorithm

2. First, the processing graph determines the structure of the

regression data uH
F ,i, which are the rows of the matrix UF ,

whose columns are the eigenvectors of the Laplacian matrix

associated with the set of support frequencies F . Then, the

topology of the communication graph determines how the

processed information is diffused over the network of agents.

This illustrates how, when reconstructing graph signals in a

distributed manner, we have to take into account both the

processing and communication aspects of the problem.
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Fig. 2: Optimal probability vector, and noise variance, versus

node index, for different values of γ.

V. NUMERICAL RESULTS

We consider a graph signal composed of N = 30 nodes,

with topology depicted in Fig. 1. The graph signal can

be represented using only the first five eigenvectors of the

Laplacian matrix of the graph in Fig. 1, i.e. |F| = 5. The

Gaussian observation noise in (3) is zero-mean, with variance

terms at each node illustrated in Fig. 2 (bottom).

An example of optimal probabilistic sampling, obtained

solving Problem (14) with γ = 10−2, β = 0.95, and pmax

i = 1
for all i, is illustrated in Fig. 1, where the color (in gray scale)

of the vertexes denotes the sampling probability. Problem (14)

was solved using the CVX sedumi software [24]. As we can

notice from Fig. 1, the method selects a very sparse probability

vector in order to guarantee the target MSD value. As a further

example, in Fig. 2 (top and middle), we report the optimal

probability vector obtained solving Problem (14) for different

values of γ. In all cases, the constraint on the MSD is attained
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Fig. 3: MSD versus iteration index, for different algorithms.

strictly. From Fig. 2 (top and middle), as expected, we notice

how the method enlarges the expected sampling set if we have

a stricter requirement on the MSD, assigning large sampling

probabilities to nodes having low noise variances.

Finally, in Fig. 3, we report the temporal behavior of the

MSD obtained using three different algorithms: the proposed

RLS method in Algorithm 1; the LMS algorithm for graph

signals from [16]; and the DRLS strategy in Algorithm 2,

considering different numbers K of inner consensus iterations,

i.e., K = 1 and K = 3. The parameters of the RLS are

β = 0.95, γ = 10−2, and the sampling strategy was selected

solving problem (14). The parameters of the other algorithms

are chosen to match the steady-state performance of the RLS

method. The communication graph for the DRLS algorithm

is chosen as a connected sub-graph of the processing graph

in Fig. 1. The theoretical results in (13) are also reported

as a benchmark. As we can see from Fig. 3, the theoretical

expression in (13) well predicts the numerical results. Also,

as expected, the RLS strategy is much faster than the LMS

method proposed in [16], at the cost of a higher complexity.

Finally, increasing the number K of inner consensus iterations,

we notice how the behavior of the DRLS algorithm approaches

the performance of the centralized RLS, at the cost of a larger

number of exchanged parameters over the network.

VI. CONCLUSIONS

In this paper we have first introduced a novel RLS es-

timation strategy for graph signals based on a probabilistic

sampling mechanism over the graph. Then, we have derived a

mean-square analysis that shed light on how the probabilistic

sampling strategy affects the performance of the RLS algo-

rithm. On the basis of such analysis, we have formulated an

optimization problem that selects a sparse sampling probabil-

ity vector that guarantees a prescribed performance level in

terms of MSD. Finally, a distributed RLS strategy is derived

exploiting the ADMM-based decomposition method, and is

shown to be convergent to the centralized method. Numerical

results illustrate the good performance of proposed methods

for distributed adaptive reconstruction of graph signals.
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