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ABSTRACT

Several engineering applications ranging from control
to communications have to deal with a clipped Gaus-
sian process, observed in the presence of Additive White
Gaussian Noise (AWGN). For such a scenario, we derive
in this paper a closed form expression of a Bayesian esti-
mator, which recovers the original undistorted Gaussian
process by minimizing the mean square estimation error.
In addition, we use the obtained closed form expression
to show that the Bayesian estimator results in a Bit-
Error Rate (BER) improvement compared to existing
receivers for an Orthogonal Frequency Division Multi-
plexing (OFDM) system in an AWGN channel that is
impaired by a clipping device at the transmitter.

1 INTRODUCTION

Estimating a Gaussian process x(t) that passes through
a clipping device f(x), and is corrupted by Additive
White Gaussian Noise (AWGN) n(t), is a problem en-
countered in several engineering applications ranging
from control to communications (see Fig. 1). The goal
of this paper is to derive a closed form expression of a
Bayesian estimator, which recovers the original undis-
torted Gaussian process by minimizing the mean square
estimation error [1].
The paper focuses on the general derivation of the

result, rather than applying it to a specific system.
However, it is clear that the system model under con-
sideration applies to frequency-flat communication sys-
tems, when the transmitted signal is a superposition of
many independent signals, which thanks to the central
limit theorem can be approximated by a Gaussian pro-
cess, and when the D/A converters and amplifiers at
the transmitter introduce a clipping of the transmitted
signal. Examples of such communication systems are
Orthogonal Frequency Division Multiplexing (OFDM)
and downlink Code Division Multiple Access (CDMA),
where the Probability Density Function (PDF) of the
transmitted signal is well approximated by a Gaussian
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Figure 1: System model.

if the number of active carriers (for OFDM) or active
users (for downlink CDMA) is sufficiently high.

2 BAYESIAN ESTIMATOR

We consider the system depicted in Fig. 1. The output
y(t) of this system can be written as

y (t) = f [x(t)] + n(t) = z (t) + n(t), (1)

where x(t) is a zero-mean stationary Gaussian process,
f(x) models a clipping device:

f (x) =
{

x if |x| < xo

xosign(x) if |x| > xo
, (2)

z(t) is the output of the clipping device, and n(t) is
zero-mean AWGN. We wish to estimate x(t) from the
knowledge of y(t). The goal is to minimize both the non-
linear distortion introduced by f(x), and the additive
distortion introduced by n(t).
Estimating x(t) from the knowledge of y(t) is a classi-

cal a posteriori estimation problem. From the Bayesian
estimation theory [1] it is well known that the instan-
taneous optimum estimator, in the Minimum Mean-
Square Error (MMSE) sense, of x(t) given y(t) is ex-
pressed by the conditional expectation of x(t) given y(t).
In other words, for each t,

x̂opt = E {x|y} =
∫ +∞

−∞
xpx|y (x, y) dx

=
1

py (y)

∫ +∞

−∞
xpy|x (x, y) px (x) dx, (3)

where px(x) and py(y) are the PDFs of x(t) and y(t),
respectively; and py|x(x, y) is the conditional PDF of



y(t) given x(t). The PDF of x(t) can be written as

px (x) =
1√
2πσ2

x

e
− x2

2σ2
x , (4)

where σ2
x is the signal power. When x(t) is clipped by

f(x) (see (2)), it is easy to show that the PDF of the
output z(t) can be written as

pz (z) = px (z)u2xo
(z)+Aδ (z + xo)+Aδ (z − xo) , (5)

where δ (z) is the Dirac impulse, u2∆ (z) is the rectan-
gular function given by

u2∆ (z) =
{

1 if |z| < ∆
0 if |z| > ∆ ,

and A is the probability that x is larger than xo:

A = Prob {x > xo} = 1
2

[
1− erf

(
xo√
2σ2

x

)]
,

with erf(·) being the error function. The PDF of n(t)
can be written as

pn (n) =
1√
2πσ2

n

e
− n2

2σ2
n , (6)

where σ2
n is the noise power. Since we may assume that

x(t) is independent of n(t), y(t) is the sum of two inde-
pendent random variables and its PDF is

py (y) =
∫ +∞

−∞
pz (τ) pn (y − τ) dτ. (7)

Substituting (5) and (6) into (7), we obtain

py (y) =
A√
2πσ2

n

[
e
− (y−xo)2

2σ2
n + e

− (y+xo)2

2σ2
n

]

+
1

2
√
2π (σ2

n + σ2
x)
e
− y2

2(σ2
n+σ2

x) [erf (α1)− erf (α2)] , (8)

where

α1 =
σ2

x (xo − y) + σ2
nxo

σxσn

√
2 (σ2

x + σ2
n)

, α2 =
−σ2

x (xo + y)− σ2
nxo

σxσn

√
2 (σ2

x + σ2
n)

.

From (1), (2), and (6), it is also easy to check that

py|x (x, y) = pn (y − f (x))

=
1√
2πσ2

n

·




e
− (y−x)2

2σ2
n if |x| < xo

e
− (y−xo)2

2σ2
n if x > xo

e
− (y+xo)2

2σ2
n if x < −xo

. (9)

Substituting (4), (8), and (9) into (3), results in the fol-
lowing closed form expression of the Bayesian estimator
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Figure 2: Bayesian vs. linear (IBO = −2 dB).

of x(t) given y(t):

x̂opt =
1

py (y)

{
σx

2πσn
e
− x2

o
2σ2

x

(
e
− (y−xo)2

2σ2
n − e

− (y+xo)2

2σ2
n

)

+
σ2

x

2
√
2π (σ2

n + σ2
x)

3
ye

− y2

2(σ2
n+σ2

x) [erf (α1)− erf (α2)]

+
σxσn

2π (σ2
n + σ2

x)
e
− y2

2(σ2
n+σ2

x)
(
e−α2

2 − e−α2
1

)}
. (10)

As expected, the above expression shows that the
Bayesian estimator depends on the signal power σ2

x, the
noise power σ2

n, and the clipping level xo. Let the Input
Back-Off (IBO) be the ratio between the input power
corresponding to the clipping level xo and the signal
power σ2

x. Notice that the IBO determines the working
point of the system. And let the Signal-to-Noise Ratio
(SNR) be the ratio between the power of z(t) and the
noise power σ2

n. We can then express x̂opt as a function
of x2

o, IBO, and SNR by making the following substi-
tutions in (10):

σ2
x =

x2
o

IBO
,

σ2
n =

E
{
z2

}
SNR

=
γσ2

x

SNR
. (11)

Notice that γ is the ratio between the power of z(t) and
the signal power σ2

x. It only depends on the IBO. For
the clipping function f(x), γ can be written as [2]

γ =
E

{
z2

}
σ2

x

= 1− e−IBO/2
√
2IBO/π

+ (IBO − 1) erfc
(√

IBO/2
)
, (12)

where erfc(·) is the complementary error function.

3 ALTERNATIVE ESTIMATORS

In this section, we review three alternative approaches
to solving the same estimation problem. The first one
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Figure 3: Bayesian vs. linear (IBO = 0 dB).
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Figure 4: Bayesian vs. linear (IBO = 3 dB).

is the conventional linear estimator:

x̂conv
lin = y. (13)

The second one is the linear MMSE estimator. It re-
lies on the Bussgang theorem, which states that a zero-
mean stationary Gaussian process distorted by a mem-
oryless non-linearity can always be written as the sum
of two uncorrelated stationary processes, one being a
scaled replica of the undistorted zero-mean stationary
Gaussian process [2]. Therefore, we can write y(t) as

y(t) = z(t) + n(t) = αx(t) + nd(t) + n(t), (14)

where nd(t), which we refer to as the non-linear distor-
tion noise, is a stationary process uncorrelated with x(t).
The scale α only depends on the IBO. For the clipping
function f(x), α can be written as [2]

α =
E {xf (x)}

σ2
x

= erf
(√

IBO/2
)
. (15)

Since nd(t) is uncorrelated with x(t), its power is

E{n2
d} = E{z2} − α2σ2

x = (γ − α2)σ2
x, (16)

where α is given in (15) and γ is given in (12). Us-
ing (16) and (11), the linear MMSE estimator can now
be expressed as

x̂MMSE
lin =

ασ2
x

α2σ2
x + E{n2

d}+ σ2
n

y

=
αSNR

γ(1 + SNR)
y. (17)

The third estimator is the cubic MMSE one:

x̂MMSE
cub = ay3 + by, (18)

where a and b are chosen to minimize the mean-square
estimation error:

(a, b) = min
(a′,b′)∈R2

E
{|a′y3 + b′y − x|2} .

Since it is difficult to derive a and b in closed form, we
will instead compute them using a training sequence.
Note that the Bayesian estimator in Section 2 can be
viewed as an MMSE estimator based on an infinite order
polynomial.
Figs. 2, 3, and 4 show the normalized (by xo) input-

output of the Bayesian estimator for several SNRs and
IBOs, and compare it with the conventional linear and
linear MMSE alternatives. To explain the particular
shape of the Bayesian estimator, let us focus on the re-
gion of positive received signals y(t). It is clear that
when y(t) � xo, it is with high probability equal to
x(t) + n(t), at least when σ2

n � σ2
x. In this case, the

conventional linear estimator is optimal. On the other
hand, when y(t) � xo, it is with high probability equal
to xo+n(t), at least when σ2

n � σ2
x. The optimal estima-

tor now corresponds to a decision device. The saturation
level of this decision device can be shown to be

x̂sat = lim
y→∞ x̂opt (y) =

1
A
√
2π

σ3
x

σ2
x + σ2

n

e
− x2

o
2σ2

x ,

which clearly depends on the signal power σ2
x, the noise

power σ2
n, and the clipping level xo. The region in be-

tween is the region where the problem shows its non-
linear nature, and the width of this region increases with
decreasing SNR.

4 APPLICATION TO OFDM

In an OFDM system [3] [6], an N -point IFFT is ap-
plied on a block of N data symbols {am[n]}N−1

n=0 drawn
from a finite alphabet. The resulting block of N sym-
bols {xm[k]}N−1

k=0 is then transmitted over the channel.
Denoting the duration of a block by Tb = NTs, the
transmitted signal is

x(t) =
∞∑

m=−∞

N−1∑
k=0

p(t−mTb − kTs)xm[k], (19)

where p(t) represents the pulse shaper. In a base-
band system such as xDSL, x(t) is always real. This



is obtained by imposing the condition of a conjugate
symmetric spectrum on the block of N data symbols
{am[n]}N−1

n=0 [5]. In a Radio Frequency (RF) system,
x(t) is generally complex and its real and imaginary
parts are modulated on respectively a cosine and a sine
with frequency equal to the carrier frequency. Either
way, if the data symbols are random, x(t) (for base-
band) or its I-Q components (for RF) can be viewed as
zero-mean Gaussian processes if the number of subcar-
riers N is sufficiently high (let’s say N ≥ 64). More-
over, if p(t) is rectangular or symmetric bandlimited,
then x(t) (for baseband) or its I-Q components (for
RF) are also stationary. Hence, if a clipping device
is used on x(t) (for baseband) or its I-Q components
(for RF) to limit the dynamic range, the closed forms
presented in this paper are applicable. Suppose clip-
ping is the only distortion introduced by the transmit-
ter, and the channel is AWGN, i.e., the received OFDM
signal is y(t) = f [x(t)] + n(t), with x(t) as in (19).
The block of N data symbols {am[n]}N−1

n=0 can then
be estimated at the receiver by applying an N -point
FFT on {x̂m[k]}N−1

k=0 , where x̂m[k] = x̂(t−mTb − kTs),
with x̂(t) representing an estimate of x(t), obtained as
in (10), (13), (17), or (18).
Fig. 5 shows the BER performance of a baseband

OFDM system for different estimators, and different
IBO values. For simplicity, we use BPSK modulation.
From the Bussgang theorem (see (14)), we see that clip-
ping introduces two undesirable effects that degrade the
performance of the linear MMSE estimator. The first is
the power attenuation by a factor α2, whereas the sec-
ond is the non-linear distortion noise nd (t). The first
effect is responsible for an SNR penalty, which mani-
fests itself as a translation of the BER curve to the right
for decreasing IBO values. The second effect causes a
BER floor at high SNR, where the non-linear distortion
noise nd (t) masks n (t) (see also [4] for further details
on this issue). It is clear that the effect of the power
attenuation by a factor α2 can not be reduced, because
it results from the power loss that is introduced by clip-
ping, which is an irreversible operation. On the other
hand, the effect of the non-linear distortion noise nd (t)
can be reduced by exploiting the a priori knowledge of
its distribution or, equivalently, the distribution of the
clipped signal, as our Bayesian approach does. Keeping
these considerations in mind, it is easy to understand
why our Bayesian estimator results in a BER perfor-
mance improvement only at high SNR. If n (t) is the
dominant noise term, then nd (t) may be ignored and we
basically obtain a linear scenario, where the useful sig-
nal x (t) is attenuated by a factor α. Consequently, the
performance of the linear MMSE estimator is very close
to the optimum performance at low SNR. Note that for
any PSK modulation, the conventional linear estimator
has the same performance as the linear MMSE estima-
tor, since the information is conveyed in the phase of
the transmitted signal. For multi-amplitude modula-

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

Linear MMSE
Cubic MMSE
Bayesian

IBO = 3 dB

IBO = 0 dB

IBO = −2 dB

Figure 5: BER performance of a baseband BPSK-
OFDM system.

tions, on the other hand, the linear MMSE estimator
will always outperform the conventional linear estima-
tor. Finally, we observe that the performance of the
cubic MMSE fit lies between the performance of the lin-
ear MMSE and the Bayesian estimator.

5 CONCLUSIONS

We have derived in closed form the Bayesian estimator
of a clipped Gaussian process in AWGN. The result can
be applied to many engineering systems ranging from
control to communications. As an illustration, we have
used the obtained closed form expression to show that
the Bayesian estimator results in a BER improvement
compared to existing receivers for an OFDM system in
an AWGN channel that is impaired by a clipping device
at the transmitter. Future work includes the extension
to frequency-selective channels that follow the clipping
device.
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