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Abstract-The aim of this paper is to examine the effects of  

the nonlinear distortions introduced by high-power amplifiers 
(HPAs) in the downlink of direct-sequence code-division multi-
ple-access (DS-CDMA) systems. By modelling the nonlinear 
distortion noise as coloured Gaussian noise, a semi-analytical 
expression for the symbol-error rate (SER) of linear multiuser 
detectors (LMDs) in frequency-selective fading channels has 
been derived. Simulation results confirm the effectiveness of the 
theoretical approach. 

I. INTRODUCTION 
DS-CDMA is a widely employed technique in satellite and 

cellular mobile communication systems. This technique is 
characterised by an almost constant envelope for uplink 
transmissions, thereby reducing, with respect to other tech-
niques like multicarrier CDMA, the system sensitivity to 
nonlinear amplifiers. Anyway, such a characteristic is lost in 
the downlink scenario, where the DS-CDMA signal transmit-
ted by the base station is the superposition of many independ-
ent signals that belong to the different users. Thus the result-
ing signal has a non constant envelope as a consequence of 
the constructive and destructive superposition of each user 
contribution. Consequently, for downlink transmissions, the 
performance degradation introduced by the nonlinear HPA 
has to be carefully taken into account. Indeed, even if a pre-
distortion technique [1] is applied to counteract the HPA 
nonlinearity, a residual clipping cannot be avoided because of 
the maximum amplifier output power. 

The nonlinear distortion effects and the consequent SER 
performance degradation induced in the system link budget 
have been analysed in [2] for the matched filter (MF) detec-
tion of DS-CDMA signals in AWGN channels, and in [3] for 
the linear decorrelating detector (LDD) in AWGN and flat 
Rayleigh fading channels. Although the frequency-flat condi-
tion can be appropriate under some circumstances, in many 
cases DS-CDMA systems are subject to frequency-selective 
fading due to the multipath propagation. This effect is espe-
cially highlighted in CDMA cellular systems (e.g. IMT-2000) 
characterised by a wide frequency band. Since frequency-
selective channels destroy the user orthogonality, high per-
formance improvements can be obtained making use of LMD 
techniques [4] because of their capability in reducing the 
multiuser interference at the receiver side. 

In this paper, we consider the SER evaluation of LMDs in 
presence of a HPA at the transmitter. Firstly, we extend to the 
minimum mean-squared error (MMSE) detector some of the 
results obtained in [2][3] for AWGN channels. Moreover, the 
degradation induced by the nonlinear amplifier is analysed in 
frequency-selective channels, obtaining the SER expression 
for quaternary phase-shift keying (QPSK) modulations. 
Simulation results, which validate the analytical approach, 
are presented for the MMSE, the LDD, and the RAKE     
receivers. 

II. SYSTEM MODEL 

The baseband signal transmitted by the base station to the 
kth user, in the downlink of a DS-CDMA system, is ex-
pressed by1 
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where T is the symbol duration, kA  and ( )ks t  are the ampli-
tude and the spreading waveform respectively, and [ ]kb i  is 
the ith symbol of the user k. The spreading waveform is ex-
pressed by 
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where N is the processing gain, /cT T N=  is the chip dura-
tion, p(t) is the chip pulse shaping waveform and [ ]kc j  is the 
jth value of the kth user spreading code, with  | [ ] | 1kc j = . 
The symbols { [ ]}kb i  belong to a set of independent and equi-
probable random variables, with 2{| [ ] | } 1kE b i = . 

The base station transmits synchronously the sum of the 
signals belonging to each user by a HPA that, if supposed to 
be instantaneous, can be modelled by its AM/AM and 
AM/PM distortion curves ( )G ⋅  and ( )Φ ⋅  respectively [1], or, 
equivalently, by a complex nonlinear distortion ( )F ⋅ =  

( ) exp[ ( )]G j⋅ Φ ⋅ . Hence the sum x(t) of the K users’ signals 
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is transformed by ( )F ⋅  into 

 arg( ( ))( ) ( | ( ) | ) j x tw t F x t e= , (4) 

which represents the baseband input-output relationship for 
the nonlinear amplifier. The output signal w(t) can be ex-
pressed as the input signal multiplied by a complex coeffi-
cient 0α , which represents the average linear amplification 
gain, plus a nonlinear distortion complex noise ( )dn t , as ex-
pressed by 

                                                           
1 Notations: We use lower (upper) bold face letters to denote vectors (matri-
ces), superscripts ∗ , T , H  and †  to represent complex conjugate, transpose, 
Hermitian and Moore-Penrose pseudo-inverse operators, respectively, {}E ⋅  
to represent the statistical expectation, x    and csgn( )x  to denote the 
smallest integer greater than x  and the complex signum of x , respectively. 
The Q-function is defined as 1/ 2 2 / 2Q( ) (2 ) exp( )xx dπ ν ν− +∞= −∫ . The sym-
bols ∗ , and ⊗  denote the convolution operator and the Kronecker matrix 
product, respectively, M N×0  is the M N×  all-zero matrix, and NI  is the 
N N×  identity matrix. We define ,( )m nA  as the (m,n)th entry of the matrix 
A , :,( ) nA  ( ,:( )mA ) as the nth column (mth row) vector of the matrix A , 

,1( )ma  ( 1,( ) na ) as the mth (nth) entry of the column (row) vector a . 



 

 

 0( ) ( ) ( )dw t x t n tα= + . (5) 
This paper assumes that the signal w(t), which is transmit-

ted by the base station, passes through a slowly varying mul-
tipath channel, characterised by an impulse response 
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where Q  is the number of paths, and qβ , qθ  and qτ  are the 
gain, the phase-shift, and the propagation delay of the qth 
path of the channel, respectively, and ( )δ τ  is the delta Dirac 
function. By exploiting (5), the signal ( )r t  at the input of the 
receiver can be expressed by 
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distortion noise, and ( )n t  is the thermal noise. 
At the receiver side, assuming perfect synchronisation and 

channel state information, ( )r t  is filtered by a chip-matched 
filter, and successively sampled at the chip rate, obtaining 
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The received chip [ ]nr l , expressed by (8), is characterised by 
three additive parts: ,SIG SIG[ ] ( ) ( )n cr l r t p t lT nT dt

+∞ ∗

−∞
= − −∫  is 

the useful component related to ( )x t , ,NL[ ]nr l =  
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− −∫  is the in-band nonlinear distortion 

noise introduced by the quantity ( )dn t , and ,AWGN[ ]nr l =  
( ) ( )cn t p t lT nT dt

+∞ ∗

−∞
− −∫  is the in-band thermal noise with 

power 2
AWGN ,AWGN{| [ ] | }nE r lσ 2 = . 

Assuming that the maximum delay spread of the channel is 
smaller than the symbol interval (i.e. max{ }Q Tτ < ), the 
channel spreads the information related to a particular symbol 
over two symbol intervals, and consequently 2N  consecutive 
chips contain all the energy related to the symbol of interest. 
Hence, we will consider a receiving window of two symbol 
intervals. 

Defining the channel order max{ }Q cL Tτ=    , and [ ]l =r  
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( )ppR τ  is the autocorrelation function of the pulse waveform 

( )p t , [ ] [ [ ]  [ 1] ]T T Tl l l= +r r r ,   NL NL NL[ ] [ [ ]  [ 1] ]T T Tl l l= +r r r , 
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where 1: ,:( )N L N− +=C C  , we obtain 

 [ ]l =r 0arg( )
0   NL   AWGN| | [ ] [ ] [ ]je l l lαα + +GCAb r r . (11) 

Focusing on the user k, the estimate ˆ [ ]kb l  of the QPSK 
symbol [ ]kb l  is obtained by applying the 2N-row vector kd  
to the received signal [ ]lr  in (11), as expressed by 

 1/ 2ˆ [ ] 2 csgn( [ ])k kb l l−= d r . (12) 

The extension to other constellation mapping, or longer delay 
spreads, is straightforward. 
 

III. SER PERFORMANCE IN NONLINEAR AWGN CHANNELS 

First of all, we survey some known theoretical results for AWGN 
channels, which turn out to be useful for frequency-selective chan-
nels also. The background hypotheses are herein summarised as: 

i) High number K  of active users, or equivalently high number 
K  of physical channels, which belong to K  users with 
K K<  (multicode transmission). Hence, also the proc-
essing gain N must be sufficiently high. 

ii) The amplitudes { }kA  are almost equal. 
Under these assumptions, the HPA input ( )x t  in (3) can be ap-
proximated by a cyclostationary Gaussian random process, 
making possible the application of the Bussgang theorem as 
in [2]. As a consequence of this theorem, the linear component 

0 ( )x tα  and the nonlinear one ( )dn t  in (5) are mutually uncorre-
lated, and the HPA output autocorrelation function can be evaluated 
[5] as ( )wwR τ = 2

0| | ( ) ( )
d dxx n nR Rα τ τ+ , where all the quanti-

ties are averaged over the cyclostationarity period T [6], with 
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The coefficients { }iγ  and 0α , which depend on the HPA function 
( )F ⋅  and on the HPA input power 2

xσ , can be calculated as in [5] 
or as in [7]. 

In AWGN channels, since 0L = , the channel matrix G  in (9) 
becomes 2[0] Ng=G I , and a receiving window of one sym-
bol interval (N samples) is wide enough to recover the sym-
bol of interest. In this situation, it holds true 

 [ ]l =r 0
0 NL AWGN| [0] | [ ] [ ] [ ]jg e l l lϕα + +CAb r r , (14) 

where 0 0arg( ) arg( [0])gϕ α= +  is the phase-shift due to the 
channel and the HPA. Therefore the receiver can be ex-
pressed by a N-row vector 

 0
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where D  is a K N×  matrix that depends on the used detec-



 

 

tor. For the MF receiver, the detector acts like a simple de-
spreader, therefore 
 MF

H=D C , (16) 

and the SER performance can be obtained in closed form by model-
ling the multiple-access interference (MAI) and the nonlinear distor-
tion noise as Gaussian random variables. These approximations are 
reasonably justified by the high number K of active users and by the 
high processing gain N [2]. Hence, we obtain 
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is the matrix containing the crosscorrelation coefficients of 
the users' spreading codes. In [2], the nonlinear distortion 
noise power NL,kσ 2  has been evaluated supposing a rectangu-
lar chip pulse shaping waveform p(t), leading to NL,kσ 2 =  

2| [0] | (0)wwg R  

2
0| [0] | (0)xxg Rα− . Anyway, this assumption 

is not always realistic in bandlimited channels. By supposing 
a bandlimited pulse shaping waveform p(t), the nonlinear 
distortion noise power can be evaluated as NL,kσ 2 =  

2
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If we use the decorrelating detector [4], as expressed by 

 †
LDD =D C , (18) 

and assuming that the code matrix C  is full rank, the MAI is 
completely eliminated, and the SER performance can be ex-
pressed [3] as in (17), with NL,kσ 2 = 2 † †

,| [0] | ( )H
k kg C ψC , 

SIG,kσ 2 = 2 2
0| [0] | kg Aα , 1

AWGN, , AWGN( )k k kσ σ2 − 2= R , where the 
quantity 1

,( )k k
−R  is the thermal noise amplification factor due 

to the decorrelating operation, and MAI, 0kσ 2 = . Also in this 
case the nonlinear noise †

NL ,1( [ ])klC r  can be considered 
Gaussian because of the high processing gain N [3]. 

A scaled version of the MMSE receiver is expressed by [8] 
 MMSE =D M , (19) 

where 2 1 1 1
0( | [0] | )H H

K gα − − −= +M I AC W CA AC W , and 
1−W  is the inverse of the nonlinear-plus-thermal noise co-

variance matrix =W 2
AWGN| [0] | Ng σ 2+ψ I . As far as the SER 

of the MMSE detector is concerned, we propose as in [3] to 
model the nonlinear distortion noise as Gaussian. Moreover, 
even the residual MAI at the MMSE output is well approxi-
mated by a Gaussian random variable, as shown in [9], lead-
ing to a SER that can be expressed by (17) as well, where 

SIG,kσ 2 = 2 2 2
0 ,| [0] | ( )k k kg Aα MC , NL,kσ 2 = 2

,| [0] | ( )H
k kg MψM ,  

AWGN, , AWGN( )H
k k kσ σ2 2= MM , MAI,kσ 2 = 2 2 2

0 ,
1

| [0] | ( )
K

k j j
j
j k

g Aα
=
≠

∑ MC . 

IV. SER IN NONLINEAR FREQUENCY-SELECTIVE CHANNELS 
For frequency-selective channels, the detector 

 0arg( )
,:( )j
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has to consider not only the MAI but it has also to combine 
the resolvable paths. The received vector in (11) suggests to 
regard the multipath situation, summarised by G , as the 
AWGN scenario in (14), with a modified code matrix 

=H GC . As a consequence, likewise (16), (18) and (19), for 
frequency-selective channels we can define the RAKE re-
ceiver, the LDD and the MMSE detector as 

 RAKE
H=D H  ,       †

LDD =D H  ,       MMSE =D M ,     (21) 

where =H GC , 2 1 1 1
3 0( | | )H H

K α − − −= +M I AH W HA AH W , 
AWGN 2

H
Nσ 2= +ψW G G I , and ψ  is equivalent to the squared 

matrix ψ  with higher dimension 2N L+ . 
By applying the detector D  in (21) to the received signal 

[ ]lr  in (11), we obtain 
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where  [ ]k l =s 0 SIG,| | [ ]k lα DH Ab  is the useful signal of the 
user k, [ ]k l =m 0 MAI,| | [ ]k lα DH Ab  is the intersymbol inter-
ference (ISI) plus MAI term, 0arg( )

  NL[ ] [ ]jl e lα−=n Dr is the 
nonlinear noise, 0arg( )

  AWGN[ ] [ ]jl e lα−=a Dr  is the thermal noise 
part, and SIG, 2 1 :, 2 2[ ( ) ]k N K k K k N K k× + − + × −=H 0 H 0  and MAI,k =H  

:,1: 1 2 1 :, 1:3[( ) ( ) ]K k N K k K+ − × + +H 0 H  are obtained by partitioning the 
channel-code matrix =H GC  in (11) as SIG, MAI,k k= +H H H . 

As in the AWGN scenario, we suppose that both the MAI 
and the nonlinear distortion noise can be approximated as 
Gaussian. Since these approximations work reasonably well 
in AWGN channels, a similar behaviour is expected in multi-
path channels, because the received signal can be thought as 
the superposition of many replicas of AWGN-like contribu-
tions, and the sum of Gaussian random variables is still Gaus-
sian. By (20), the decision variable [ ]k ld r  in (12) is equal to 
the (K+k)th element of the vector [ ]lv  in (22). Therefore, in 
order to evaluate the SER conditioned to a given channel 
realisation ( )g τ , we need to calculate the power of the 
(K+k)th element of the vectors in the right hand side of (22).  

As far as the thermal noise is concerned, the elements of 
the vector [ ]la  are jointly complex Gaussian random vari-
ables, because obtained as linear combination D  of jointly 
complex Gaussian random variables contained in   AWGN[ ]lr . 
The covariance matrix AWGNΦ of [ ]la  is expressed by 

 AWGN AWGN[ ] [ ]{ }H HE l l σ 2= =Φ a a DD , (23) 

and hence the (K+k)th element of the thermal noise vector 
[ ]la  in (22) has power A,kσ 2  expressed by 

 A, , AWGN( )H
k K k K kσ σ2 2

+ += DD . (24) 

For the nonlinear noise, we observe that the element 
,1( [ ])K kl +n of the vector [ ]ln  is the sum of the 2N  elements 

of   NL[ ]lr , weighted by the 2N  elements of 0arg( )
,:( )j

K ke α−
+D , 

and consequently, if the processing gain N  is high enough, 
the nonlinear distortion noise ,1( [ ])K kl +n  can be well ap-
proximated as a Gaussian random variable. The accuracy of 



 

 

this approximation depends not only on the processing gain 
N , but also on the channel realisation ( )g τ  contained in 

=H GC , which affects the values of the weighting vector 
0arg( )

,:( )j
K ke α−

+D , and on the power input back-off (IBO) to 
the HPA. Indeed, if few elements of ,:( )K k+D  are character-
ised by a higher modulus with respect to the others, the cen-
tral limit theorem, and consequently the Gaussian approxima-
tion, will tend to fail. On the contrary, if many elements of 

,:( )K k+D  have significant modulus, the approximation accu-
racy is very good, because many elements of the vector [ ]ln  
are weighted with coefficients having almost-equal values. 
Moreover, if the IBO is too high, most of the elements of 

  NL[ ]lr  are close to zero (at least for class A or ideally predis-
torted amplifiers) and consequently [ ]ln  is practically ob-
tained by the linear combination of few significant elements, 
thus violating the central limit theorem hypothesis as well. 
The covariance matrix NLΦ of the vector [ ]ln  is expressed by 

 NL [ ] [ ]{ }H H HE l l= = ψΦ n n DG G D , (25) 

and therefore the (K+k)th element of the nonlinear distortion 
noise vector [ ]ln  in (22) has power N,kσ 2  expressed by 
 N, ,( )H H

k K k K kσ 2
+ += ψDG G D . (26) 

As far as the ISI plus MAI term [ ]k lm  in (22) is con-
cerned, the good accuracy of the Gaussian approximation has 
been already tested in [10] for the RAKE and MMSE receiv-
ers in linear scenarios. Moreover, in many cases (e.g. when 
2 max{ , } 2K K L N+ ≤ , [6]) the LDD is able to eliminate both 
ISI and MAI, i.e. 1:2 ,1 1( [ ])k K K Kl + ×=m 0 . The covariance matrix 

MAIΦ of the column vector [ ]k lm  is expressed by 

   MAI [ ] [ ]{ }H
k kE l l= =Φ m m 2 2

0 MAI, MAI,| | H H
k kα DH A H D , (27) 

and therefore the (K+k)th element of the vector [ ]k lm  in (22) 
is characterised by a power M,kσ 2  expressed by 
 M,kσ 2 = 2 2

0 MAI, MAI, ,| | ( )H H
k k K k K kα + +DH A H D . (28) 

The power of the (K+k)th element of the signal vector  [ ]k ls  
in (22) can be obtained as in the previous case, leading to 
 S,kσ 2 = 2 2

0 SIG, SIG, ,| | ( )H H
k k K k K kα + +DH A H D , (29) 

which is equal to 2 2
0| | kAα  for the LDD [6]. 

Being the symbol-error probability conditioned to a given 
channel realisation ( )g τ  equal to 

 ( )S, M, N, A,( ) ( )k k k k kP g f σ σ σ σ2 2 2 2= + + , (30) 

where the quantities S,kσ 2 , M,kσ 2 , N,kσ 2  and A,kσ 2  depend on 
the detector that is chosen among the ones in (21), the aver-
age SER can be obtained by averaging (30) over the joint 
probability density function ( )p g  of the channel parameters 

,..., , ,..., , ,...,Q Q Qβ β θ θ τ τ1 1 1 , as expressed by 

 SEL, ( ) ( )k kP P g p g dg= ∫ . (31) 

We want to point out that our approach used to obtain (31) is 
quite similar to the one of [10] for linear scenarios. The main 
difference is that, since we assume the spreading codes as 
fixed, the average over the spreading codes is not needed. 
 

V. SIMULATION RESULTS 

The situation in which the base station transmits data to 
40K =  users is considered. The amplitudes { }kA  are equal 

for all users. Gold sequences of length 63N =  have been 
chosen for the short spreading codes { [ ]}kc j . For the chip 
pulse shaping waveform p(t), a square-root raised cosine with 
roll-off factor equal to 0.22ρ =  has been chosen. The 
nonlinearities considered are the soft-limiter model (32), 
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which is the envelope input-output characteristic of an ideal 
predistorted HPA, and the Saleh model (33) 
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The apparent signal-to-noise ratio ( appSNR ) is defined at the 
input of the LMD as 
 2 2

app ,SIG ,NL AWGNSNR ( {| [ ] | } {| [ ] | })n nE r l E r l σ 2= + , (34) 

while the IBO and the output back-off (OBO) are defined as 
 ,maxIBO z zP P=  ,    ,maxOBO w wP P=  , (35) 

where ,maxzP  ( ,maxwP ) and zP  ( wP ) represent the maximum 
and the average HPA input (output) power, respectively. 

Fig. 1 shows the SER performance of the MMSE receiver 
in AWGN channels when the soft-limiter model (32) is used 
for the HPA. It is evident that there is a very good agreement 
between the analytical model and the simulation results for 
high OBO and for very low OBO values, while there is a lit-
tle mismatch at high SNR for low OBO values (OBO = 1.30 
dB). As explained in [3], this mismatch is due to the Gaussian 
approximation of the nonlinear distortion noise. 

Fig. 2 shows the SER performance of the three linear re-
ceivers (RAKE, LDD, MMSE) in frequency-selective fading 
channels. The soft-limiter model (32) with OBO = 1.99 dB 
has been chosen for the HPA. The amplitudes { exp( )}q qjβ θ  
of the 15Q =  channel paths are modelled as independent 
zero-mean complex Gaussian random variables with variance 

2{| | } 1qE Qβ = , while the path delays { }qτ  are multiple of 
the chip duration cT . The theoretical SER has been evaluated 
by averaging (30) over 400chN =  independent channel reali-
sations. As expected, the MMSE receiver outperforms the 
other two detectors. 

Figs. 3-4 show the SER performance of the MMSE detec-
tor with the frequency-selective channel model described 
above, using the HPA model (32) and (33), respectively. As 
in AWGN channels, there is a good agreement between ana-
lytical model and simulation results, especially if the OBO is 
very low or quite high. Moreover, little mismatch is present 
when the OBO is roughly 2 dB (Fig. 4). 
 

VI. CONCLUSIONS 

An analytical framework to evaluate the SER performance 
of LMDs for DS-CDMA systems subject to amplifier nonlin-
ear distortions in frequency-selective fading channels has 
been introduced. Results for QPSK mapping with square-root 



 

 

raised cosine pulse shaping have been presented. Simulation 
results have shown how the analytical model is appropriate 
under the hypotheses of high number of users and high 
spreading gain. 
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Fig. 1. SER of the MMSE detector in AWGN channels. 
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Fig. 2. SER comparison in frequency-selective channels. 
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Fig. 3. SER of the MMSE in frequency-selective channels. 
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Fig. 4. SER of the MMSE in frequency-selective channels. 


