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Abstract—This paper deals with the analytical evaluation of 
the average delay, the packet-loss rate (PLR) and the throughput 
of a multi-user (MU) wireless system that capitalizes on a cross-
layer design of adaptive modulation and coding (AMC) with 
automatic repeat request (ARQ). To this end, we propose a 
heuristic scheduling policy, which has the nice properties to 
effectively exploit the system resources and to be analytically 
tractable. Simulation results confirm the effectiveness of the 
proposed scheduler. Moreover, the excellent match between 
analytical and simulated performance allows the proposed 
approach to be used for cross-layer design optimization, avoiding 
time-consuming simulations. 

Keywords—Adaptive modulation and coding (AMC); automatic 
repeat request (ARQ); cross-layer design; scheduling. 

I. INTRODUCTION 
The increasing interest in cross-layer design for wireless 

systems has highlighted the necessity of an analytical 
characterization of such systems, capable of accounting for the 
specific issues arising when more layers are considered 
together. In this work, we consider the physical layer (PHY-L) 
and the data link layer (DL-L). More specifically, we focus on 
cross-layer combining of AMC at PHY-L with ARQ at DL-L 
[1]-[4]. The combination of AMC and ARQ enhances the 
spectral efficiency of wireless systems, because the error-
correcting capabilities of ARQ allow the use of higher 
modulation rates at PHY-L. However, the ARQ packet 
retransmissions introduce a time delay that can become 
unacceptable for real-time applications. Thus, a main goal is to 
find a good trade-off between PLR and average delay, 
depending on the specific application. 

Previous work on this subject includes [3], where an 
interesting combination of queuing with AMC is proposed for 
single-user (SU) scenarios, taking into account the queuing 
delay of the packets. Moreover, in [3], the PLR and the 
throughput are derived analytically, by means of a finite-state 
Markov chain analysis [5], allowing a cross-layer design of the 
system. The ARQ protocol, not considered in [3], is taken into 
account in [4] and [6] using analytical models. In particular, [4] 
deals with an MU scenario, where multiple (frequency) 
channels are statically preassigned to multiple users in 
accordance to their average signal-to-noise ratio (SNR) 
conditions, buffer sizes, packet arrival rates, available 
transmission modes (TMs), and quality of service (QoS) 
requirements. Differently, [6] focuses on an SU scenario, with 

finite buffer length, and proposes a joint design of ARQ and 
AMC where the user TM is chosen dynamically in accordance 
with its instantaneous SNR. Specifically, in [6], the PLR, the 
average delay and the system throughput are expressed in 
closed form, allowing a throughput optimization by means of 
an exhaustive search in a finite space, bounded with the 
(aforementioned) QoS constraints. However, the model defined 
in [6] only considers an SU wireless channel. 

In this work, we generalize the approach of [6] to the case 
of many users that share a single channel. Consequently, we 
will define and theoretically model a scheduling policy. A 
heuristic scheduler was proposed in [7] for a similar MU 
environment, without providing an analytical characterization 
of its performance, which actually seems to be very 
challenging. Thus we propose in this paper a different heuristic 
scheduler that is analytically tractable. We found that the 
efficiency of the two algorithms is quite similar: however we 
will not show a simulation comparison between them due to 
lack of space. Specifically, with respect to [7], we focus on the 
special case of real-time users, where we refine the policy 
proposed in [7] by considering the buffer occupancy instead of 
the time delay. Anyway, this modification alone is not enough 
to easily cast the derivation of the scheduler performance into 
the plain extension of [6] to the MU case. Indeed, a rigorous 
generalization of [6] to the MU scenario, with an arbitrary 
scheduling policy, would require a complete characterization of 
the states of all the users, leading to an exponential complexity 
in the number of users, which is practically unmanageable. To 
overcome this problem, we introduce some simplifying 
assumptions that lead to a model with good accuracy and low 
complexity, which is independent of the number of users. 

For the sake of complexity reduction, we consider users 
with identical statistics and QoS constraints, which allow to 
define also a simpler scheduling policy. However, it is 
important to note that our approach can be extended to the case 
of users with different QoS and traffic characteristics, provided 
that their states are modeled as proposed in this work. We 
concentrate on a simpler scenario in order to maintain the 
description and notation accessible. 

II. SYSTEM MODEL AND SCHEDULING 
We consider an uplink wireless link between U single-

antenna transmitters (users) and a single-antenna receiver (base 
station). As previously explained, we consider a simple 
scenario where the users have identical traffic statistics and 
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QoS constraints. In particular, perfect power control is 
assumed, where the average SNR is the same for each user. 
Each link must support QoS-guaranteed traffic, with a 
maximum average packet delay δ  and a maximum packet loss 
rate ρ , equal for every user. The TM is chosen by the AMC 
selector at the receiver end depending on the instantaneous 
SNR at each decision epoch, and fed back to the transmitting 
user [6]. We consider the TMs defined in Table 1 of [6], with a 
Nakagami-m fading channel model. The generation of the 
users’ packets is memoryless: specifically, we consider a 
Poisson packet arrival process. All packets have the same 
length of pN  bits at DL-L, which are mapped on time slots 
with different durations at PHY-L, accordingly to the current 
TM. Each buffer has a maximum packet length B . The basic 
assumptions of our model, which come from [6], are briefly 
summarized below: 
A1) At PHY-L, time is slotted as in Fig. 1, and each slot 

contains one packet from DL-L. The overhead is assumed 
as negligible. We also assume perfect time synchronization 
among users. 

A2) The propagation channel is modeled by a Nakagami-m 
frequency-flat block-fading channel [8], with coherence 
time interval (CTI) of fT  seconds. The channel variation 
from one CTI to another is captured by a Markov chain 
model [9]. 

A3) The TMs are selected at the receiver with perfect CSI 
knowledge, and they are fed back to the transmitter, 
without errors and with zero latency. 

A4) The error detection at the receiver, by means of CRC, is 
perfect. The users’ packets are dropped either after rN  
retransmissions, or when the transmitter buffer is full. 

The critical difference with respect to [6] is the presence of 
several users, which share the same PHY-L resource. This 
entails the necessity of a scheduling policy in order to have a 
good throughput, while preserving a certain fairness among 
users. Thus, we are specifically interested to constrain not only 
the average delay, but also the maximum delay. On the other 
hand, an efficient scheduling algorithm should exploit the 
diversity offered by the high number of users, usually known as 
multi-user diversity (MUD) [10], which allows to enhance the 
average system rate with respect to the SU scenario. We also 
would like to analytically address the system performance in 
order to avoid extensive simulations and, possibly, gain a 
deeper insight on the parameters that really affect performance. 
To this end, we need to define a scheduling policy that is both 
effective and mathematically tractable. In this view, we 
propose a heuristic centralized scheduling algorithm which is 
accomplished at the beginning of each CTI as in [7], with 
instantaneous decisions, and perfect knowledge of the state of 
each user. The state ( )i

jψ of the j th user is defined as 

 ( ) ( ) ( ) ( )( , , )i i i i
j j j jc q r=ψ , (1) 

where ( )i
jc  is the channel mode, ( )i

jq  is the buffer occupancy, 
and ( )i

jr  is the actual number of retransmissions at the time 
instant it , which represents the beginning of the i th CTI. We 
associate to each channel state ( )i

jc  the channel rate ( )i
jK  as in 

Table 1 of [6]. We also consider, as in [7], perfect and 
instantaneous feedback of the scheduler decision to all the 
users. Our scheduling policy is aimed at enhancing the rate of 
the system without introducing an excessive delay. To this end, 

Fig. 1. State and substate transitions. 
 

we define the utility function ( ) ( ) ( )i i i
j j jK qφ = . Nevertheless, in 

order to reduce the PLR, if some users have full buffer, the 
priority is assigned to them, irrespectively of ( )i

jφ . In the 
following, we present our scheduling algorithm. We define 

TxS ={ users with full buffer and 0TM TM≠ } ; 

0TxS ={ users with maximum ( )i
jφ } ; 

1TxS ={ users 0TxS∈  with maximum ( )i
jr } ; 

2TxS ={ users TxS∈  with maximum ( )i
jr } ; 

3TxS ={ users 2TxS∈  with maximum ( )i
jc } ; 

the proposed scheduling algorithm can be expressed as: 

if {}TxS =  
then the transmission is randomly assigned to a user 1TxS∈ ; 
else the transmission is randomly assigned to a user 3TxS∈ ; 
end 

It is worth noting that the scheduling algorithm in [7] is not 
optimized for the minimization of the average delay of real-
time users, because it considers different classes of users, and 
tries to maximize the system rate, while maintaining the delay 
of real-time users within a suitable bound. Conversely, for 
equal real-time users, our scheduler adopts a strategy aimed at 
reducing the average delay of each user. Indeed, from the Little 
theorem [5], we know that the average delay is proportional to 
the average buffer occupancy, thus, in the scheduling policy, 
we consider the buffer occupancy instead of the instantaneous 
delay of the packets, in order to constrain the former and 
consequently also the average delay. 

III. JOINT AMC AND QUEUING ANALYSIS 
We first briefly summarize the analysis carried out in [6] in 

SU scenarios for the queuing process induced by the truncated 
ARQ at DL-L jointly with the AMC scheme at PHY-L. The 
AMC scheme proposed in [6] partitions the entire SNR range 
into 1N +  non-overlapping consecutive intervals, each 
associated in increasing order to TM0, TM1, …, TMN. 
Boundary points of each SNR interval are calculated using the 
same target packet-error rate (PER) for all the TMs (see Eqs. 1-
4 in [6]). An exception is made for TM0, where the channel is 
in a deep fade and by definition PER 1= . Thus, the channel 
evolution is characterized by the 1N +  probabilities of the 
channel states, which correspond to the TMs, and are derived 
accordingly to the PER and the average SNR of the considered 

( ) ( ) ( )( ), , ,1i i i
j j jc q r ( ) ( ) ( )( )1 1 1, , ,0i i i

j j jc q r+ + + ( ) ( ) ( )( )2 2 2, , ,1i i i
j j jc q r+ + + ( ) ( ) ( ) ( )( )3 3 3 3, , ,i i i i

j j j jc q r T+ + + +( ) ( ) ( )( )1 1 1, , ,1i i i
j j jc q r− − −

( ) ( )( ),0 ,0,i i
j jq r ( ) ( )( ),1 ,1,i i

j jq r ( ) ( )( ),2 ,2,i i
j jq r ( ) ( )( ),3 ,3,i i

j jq r

1it − it 1it + 2it + 3it +fT slot

( ),0is ( ),1is ( ),2is ( ),3is

slot slot

CTI

slot
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Nakagami-m model. The transitions between these channel 
states are modeled as a Markov chain, described by an 
( 1) ( 1)N N+ × +  channel state transition matrix CP  (see Eq. 5 
in [6]), which is derived by means of a level crossing rate 
analysis [11]. The complete state of the single user is described 
by ( )i

jψ  in (1) (the user index j , not necessary in the SU case 
[6], will be used later for the MU case). If ( )i

jc n= , i.e., the 
AMC selector chooses the n th TM, denoted by TMn , then the 
CTI is divided in ( )n

j nK K=  slots, and a single packet is 
transmitted in each slot. In addition, the queuing process is 
described by an embedded Markov chain. Specifically, the 
transitions of the substate ( ) ( )( , )i i

j jq r  in each slot, for a given 
channel state ( )i

jc n= , are described by the 
( 1)( 1) ( 1)( 1)r rB N B N+ + × + +  transition matrix nT  (see Eqs. 
14-23 in [6]). Consequently, since the system is stable [6], the 
transitions of the substate ( ) ( )( , )i i

j jq r  from a CTI to the next for 
the TM ( )i

jc n=  are described by the matrix nK
nT (see Fig. 1). 

The packet arrival process and the channel transitions are 
assumed independent, thus the transitions of the whole state 

( ) ( ) ( ) ( )( , , )i i i i
j j j jc q r=ψ  is described by the 

( 1)( 1)( 1) ( 1)( 1)( 1)r rN B N N B N+ + + × + + +  matrix (see Eqs. 
27-28 in [6]) 

 
0,0 0 0, 0

,0 ,
N N

N

K K
N N N N N

P P

P P

 
 =  
  

T T
P

T T
, (2) 

where the probabilities 0,0 ,,..., N NP P  are the elements of CP . It 
is worth noting that 0 1 1K K= = . The stationary probability 
vector associated to ( )i

jψ  is 

 ( ) ( ) ( ) ( )0,0,0 0,0,1 , , 1 , ,[ , ,..., , ]
r rN B N N B Nπ π π π−=π , (3) 

where ( , , )c q rπ  is the probability of the state ( , , )c q r , and can 
be classically calculated as (see Eq. 26 in [6]) 
 =πP π . (4) 
This is the main result of the embedded Markov chain 
modeling in [6], from which the packet loss rate (Eqs. 31-37), 
the system throughput (Eq. 38), and the average delay (Eqs. 
39-44) are analytically derived. 

The goal of our work is to derive, for each user of our MU 
system, a matrix P  equivalent to P  in (2), and consequently 
the aforementioned QoS measures accordingly to the approach 
developed in [6]. In effect, this is theoretically straightforward, 
since it would be sufficient to define, in the MU scenario, a 
superstate 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2 2( , , , , , ,..., , , )i i i i i i i i i i
U U Uc q r c q r c q r=s , (5) 

which takes into account the state evolution of all the U users. 
This way, any scheduling policy based on a memoryless utility 
function 
 ( ) ( ) ( ) ( )( , , )i i i i

j j j ju f c q r= , (6) 

could be modeled straightforwardly. Unfortunately, the 
number of possible superstates would be an exponential 
function of the number of users. Indeed, the corresponding 
stationary probability vector ( )sπ  associated to ( )is  would have 
a length equal to the length of the SU case raised to the U th 
power, as expressed by 

 ( ) [( 1)( 1)( 1)]U U
rL N B N L= + + + =s ππ

, (7) 

where Lπ  is the size of the vector π . Thus, due to the 

eigenvalue decomposition used to solve (4), the computational 
complexity of the problem is ( )

3( )O L sπ
 [12], and by (7) 

becomes exponential in the number of users, making this 
approach impractical. In order to reduce the complexity, we 
make the key assumption of the independence of the users’ 
stationary probability vectors. This assumption allows us to 
consider a single user as representative of the whole MU 
system, since we can write 

 
1 1 1 1 1 1 2 2 2( , , ,...., , , ) ( , , ) ( , , ) ( , , )...

U U U U U Uc q r c q r c q r c q r c q rπ π π π= . (8) 

The simulation results in Section V will show the good 
accuracy of this approximation, especially for high values of 
U . However, in a MU scenario, we must distinguish the cases 
in which the user is scheduled (Tx) or not (no-Tx). In the Tx 
case, the state transitions of the representative user are 
described by 

 
0,0 0 0, 0

( )

,0 ,
N N

N
T

K K
N N N N N

P P

P P

 
 =  
 
 

T T
P

T T
, (9) 

which is very similar to P . The only difference is represented 
by the submatrix 0T , which is obtained with the same method 
of 0T  (see Eqs. 16-23 in [6]), but without the rule that ( )i

jr  is 
augmented in the TM0 mode. This rule, which aims at 
reducing the delay in the SU case, is not convenient in a MU 
scenario, because this delay reduction is obtained by the 
scheduling. In the no-Tx case, the state transition matrix is 

 ( )
0

N
C= ⊗P P T , (10) 

where ⊗  denotes the Kronecker product [12], and accounts 
only for the channel variations and the packet arrival process. 
By ( )TP  and ( )NP , we can describe the state transitions of the 
representative user, provided that we can determine the 
probability of being, at the beginning of each CTI, in the Tx 
state for each different state transition, based on the 
scheduling policy. To this end, we define an extra substate 

( )i
jT  that represents the transmitting condition: ( ) 1i

jT =  when 
user j  is Tx, and ( ) 0i

jT =  when user j  is no-Tx. With this 
approach, the state of each single user at it  can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( , , , )i i i i i i
j j j j j jT c q r T=ψ . (11) 

In the following, we will drop the user index j  for notation 
simplicity. It is worth noting that this way the number of states 
is 2Lπ  for any number of users U , while in a rigorous 
analysis would be ULπ . Hence, our approach is scalable with 
the number of users. Now, we can write the 2 2L L×π π  state 
transition matrix P  associated to ( ) ( )( )i iTψ  as 

 
(0,0,0) (0,0,0) (0,0,0) ( , , )

( , , ) (0,0,0) ( , , ) ( , , )

r

r r r

N B N

N B N N B N N B N

→ →

→ →

 
 =  
 
 

M M

P
M M

, (12) 

where each transition ( 1) ( )i i− →ψ ψ  is described by the 2 2×  
substate transition matrix 

 
( 1) ( ) ( 1) ( )

( 1) ( )

( 1) ( ) ( 1) ( )

(0) (0) (0) (1)

(1) (0) (1) (1)

i i i i

i i

i i i i

p p

p p
− −

−

− −

→ →

→
→ →

 
=  
  

ψ ψ ψ ψ

ψ ψ
ψ ψ ψ ψ

M , (13) 

where we introduced the compact notation Pr{ }Ep E= . In 
(13), the elements in the first row represent the substate 
transitions ( 1) ( )i i− →ψ ψ  starting from the no-Tx case and are 
described by the matrix ( )NP . Thus, by exploiting conditional 

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

3485



probability rules, we can derive: 
 ( 1) ( ) ( 1) ( ) ( 1) ( )

( )
(0) (1) , 0 1|

[ ]i i i i i i
N

k k T T
p p− − −→ = → = →

=
ψ ψ ψ ψ

P  ,  

 ( 1) ( ) ( 1) ( ) ( 1) ( )
( )

(0) (0) , (0) (1)
[ ]i i i i i i

N
k k

p p− − −→ →
= −

ψ ψ ψ ψ
P  , (14) 

where the index is expressed by ( ) ( ) ( 1)( 1)i i
rk c B N= + +  

( ) ( )( 1) 1i i
rq N r+ + + + . Analogously, for the Tx case, we have 

 ( 1) ( ) ( 1) ( ) ( 1) ( )
( )

(1) (1) , 1 1|
[ ]i i i i i i

T
k k T T

p p− − −→ = → = →
=

ψ ψ ψ ψ
P  ,  

 ( 1) ( ) ( 1) ( ) ( 1) ( )
( )

(1) (0) , (1) (1)
[ ]i i i i i i

T
k k

p p− − −→ →
= −

ψ ψ ψ ψ
P  . (15) 

At this point, to obtain the matrix P , we calculate 
( 1) ( )0 1| i iT T

p −= → = →ψ ψ
 and ( 1) ( )1 1| i iT T

p −= → = →ψ ψ
 for each transition of 

the substate ( )iψ , based on the scheduling policy adopted. 

IV. STATIONARY STATE PROBABILITY 
Even with the simplification of (8), the calculation of the 

matrix P  by the matrices in (13) is very challenging, mainly 
because the probabilities in (14)-(15) are related to the 
probabilities of each user to be in a certain state, which clearly 
depend on the stationary probability vector 

 (0,0,0,0) (0,0,0,1) ( , , ,0) ( , , ,1)[ , ,..., , ]
r rN B N N B Nπ π π π=π . (16) 

Each ( , , , )c q r Tπ  in (16) is the probability of the state ( , , , )c q r T , 
where it obviously holds true ( , , )c q rπ = ( , , ,0) ( , , ,1)c q r c q rπ π+ . 
However, π  is not known and its derivation, which is the goal 
of this work, would require a direct solution of =πP π , which 
is not possible, due to the fact that P  is unknown. Thus, we 
will resort to an iterative procedure, where, at the n th 
iteration, nπ  is computed from the available version 1n−P , and 
is used to derive an updated version nP , to be employed in the 
next iteration. As initialization, we set 0 2 /(2 )T

L L=
π ππ 1 , where 

L1  is the all-ones column vector of size L . Then, the iterative 
procedure consists of the following three steps. 
Step1) We derive the state transition matrix nP  using (12)-
(15). The assumption in (8) greatly simplifies the computation 
of ( 1) ( )0 1| i iT T

p −= → = →ψ ψ
 and ( 1) ( )1 1| i iT T

p −= → = →ψ ψ
, because the state 

probabilities of each user can be evaluated separately. These 
transition probabilities appear, by (14) and (15), in the first 
two rows of the matrix nP . Moreover, since the scheduling 
policy is memoryless, i.e., does not depend on ( 1){ , }i

j j− ∀ψ , the 
same values can be used for all the other rows. Accordingly to 
the scheduling algorithm defined in Section II, we distinguish 
between two buffer conditions for the j th user (the iteration 
index n  is omitted for simplicity), denoted by C1 and C2. 
C1) The buffer is not full, i.e., ( )i

jq B< . In this case, in order 
to find the probability that the user j  of interest will transmit 
in the i th CTI, we firstly have to find the probability that no 
other user has full buffer or product ( ) ( )i i

h jφ φ< . Secondly, we 
have to find the conditional probability that a certain number 
of users have ( ) ( )i i

h jφ φ= , and finally the conditional probability 
that a certain fraction of those users have ( ) ( )i i

h jr r= . In order to 
express these probabilities, we define the events L, E, T , N , 

rL , and rE , as 

 

( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( )

[ , ] ,   [ 0] ,

[ , ] ,   [ 1] ,

[ ] ,   [ ] .

i i i i i i
h h j j h h

i i i i i i
h h j j h h

i i i i
r h j r h j

L K q K q q B N T

E K q K q q B T T

L r r E r r

−

−

= ≤ < = =

= = < = =

= ≤ = =

 (17) 

At this point, we can compute ( 1) ( )0 1| i iT T
p −= → = →ψ ψ

 and 
( 1) ( )1 1| i iT T

p −= → = →ψ ψ
 for the representative user j. However, since 

these probabilities are conditioned to a particular transition of 
the substate ( )i

jψ , we consider the state ( )i
jψ  of the user j as 

fixed, and only the states of the other 1U −  users as random 
variables. Moreover, it should be clear that the transmitting 
state ( 1)i

jT −  of the user j  at time 1it −  determines the 
transmitting states of all the other users. Thus, the possible 
states of the other users have a fixed value of ( 1)i

hT − . 
Specifically, if ( 1) 1i

jT − = , all the other 1U −  users are not 
transmitting, and we can write: 

( 1) ( )

1
1

| | |1 1|
0

1
( )i i

U
h U h
E N L N E NT T

h

U

h
p p p p−

−
− −

= → = →
=

− = − 
 

∑ψ ψ
 

                    |( , ) |( , )
|( , )

0

( )
1

r r

r

h uh
L E N E E Nu

E E N
u

h

u

p p
p

u

−

=

− ×   + 
∑  . (18) 

Conversely, when ( 1) 0i
jT − = , there are other 2U −  non-

transmitting users and one transmitting user, as expressed by 

( 1) ( )

2
2

| | | |( , )0 1|
0 0

2
( )i i

r

U h
h U h u
E N L N E N E E NT T

h u

U h

h u
p p p p p−

−
− −

= → = →
= =

−   
= −   

   
∑ ∑ψ ψ

 

| | | |( , ) | |( , )
|( , ) |( , )( )

1 ( 2)( 1)
r r

r r

L T E T E T L E T E T E E Th u
L E N E E N

p p p p p p
p p

u u u
−

− + 
× − − + + +  

. 

C2) The buffer is full, i.e., ( )i
jq B= . In this case, we firstly 

have to find the probability that some other user has a full 
buffer, secondly the conditional probability that a certain 
number of users have ( ) ( )i i

h jr r= , and finally the conditional 
probability that a certain fraction of those users have 

( ) ( )i i
h jK K= . We thus define further events B , cL , and cE  as 

( ) ( ) ( ) ( ) ( )[ ] ,  [ ] ,  [ ]i i i i i
h c h j c h jB q B L K K E K K= = = ≤ = =  . (19) 

Exploiting the considerations made in C1, we can write: 
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1
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 | |( , ) |( , , )

( 1)( 2)
r c rB T E B T E B T Ep p p

v v


− + + 
 . (20) 

Step2) The conditional probabilities in (18)-(20) must be 
determined by the knowledge of the stationary state 
probability vectors π  of all the users h j≠ (which by 
hypotheses are identical) at iteration 1n − . However, only the 
substates ( 1) ( 1) ( 1)( , , )i i i

h h hc q r− − −  can evolve within a fixed CTI, 
because the scheduling policy, which imposes ( 1)i

hT − , operates 
only at the beginning of each CTI. Consequently, since we 
have distinguished in (17)-(20) between Tx and no-Tx users 
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(in the ( 1)i − th CTI), we have to take into account the 
evolution of the substates ( 1){ , }i

h h j− ≠ψ  during the ( 1)i − th 
CTI, which depends, for each user h, on the (fixed) substate 

( 1)i
hT − . This evolution is captured either by the matrix ( )TP  or 

by ( )NP . Consequently, we replace 1n−π  with two different 
state distribution vectors ( )

1
T

n−π and ( )
1

N
n−π , for the Tx and no-Tx 

cases, respectively, defined as 

 
( ) ( )

( ) ( )1
1 1 1 2( )

1 ( 1)( 1)( 1)

,     [ ] [ ]
r

T T
T Tn

n n i n iT
n N B N

−
− − −

− + + +

= =
π P

π π π
π 1

 ,  

 
( ) ( )

( ) ( )1
1 1 1 2 1( )

1 ( 1)( 1)( 1)

,     [ ] [ ]
r

N N
N Nn

n n i n iN
n N B N

−
− − − −

− + + +

= =
π P

π π π
π 1

 . (21) 

These are the distribution vectors from which we must derive 
the probabilities used in (18) and (20), for Tx and no-Tx users, 
respectively. All these probabilities are conditional 
probabilities, involving specific events defined in (17) and 
(19), which in turn correspond to suitable subsets of the 
vectors ( )

1
T

n−π  or ( )
1

N
n−π . Due to the lack of space we cannot 

define all these probabilities. As an example, we can express 
|( , ), ( , , ), ( , ),/

r rL B N n L B N n B N np p p= , which becomes: 

 
, ,

( ) ( )
( , ), 1 ( , ), 1|( , ),

0 0 0 0

/
j r

h h h hr
h h h h

r NN N
N N

c B r n c B r nL B N n
c r c r

p π π− −
= = = =

= ∑∑ ∑∑ , (22) 

where 
,

( )
( , ), 1h h h

N
c q r nπ −  is a generic element of ( )

1
N

n−π . This way, the 
computation of nP  is maintained affordable, independently of 
the number of states of each user. 
Step3) The state distribution vector nπ  is derived as 

 .n n n=π P π  (23) 

The convergence of the iterative procedure has been 
investigated and verified by simulations, and a theoretical 
proof is left for further research. The iterative procedure is 
stopped when the maximum difference between the elements 
of 1n−π  and nπ  is below a suitable threshold. Noteworthy, we 
can model by the same approach other scheduling policies, by 
computation of equations analogous to (18)-(23). 

V. SIMULATION RESULTS 
We considered a number of users ranging from 2 to 20. 

The total bandwidth for each link is 1.08M symbols/sec, 
1080pN = bits, and 2fT = ms. The channel model for each 

user is based on a Markov chain as detailed in [11], and it is 
identical to one of those considered in [6], i.e., characterized 
by Rayleigh fading with SNR 15=  dB and Doppler frequency 

10df = Hz ( 0.02d ff T = ). The channel has six states ( 5N = ), 
where {0,1,2,3,6,9}nK ∈  is the average rate, associated with 
the channel states as in [6]. The average rate of a system with 

1U =  would be 4.905 packets per CTI (2.64 Mb/sec), while 
an ideal system with infinite buffers’ length and no delay 
constraints could achieve an aggregate ideal total rate (ITR) 

 ( ) ,
0 0

( ) i
jMAX

N N

MAX n n MAX nc n
n n

c U p K p K
=

= =
= =∑ ∑  (24) 

by scheduling the user MAXj  with the maximum rate in each 
CTI, thus maximally exploiting the MUD. The value of 

,n MAXp  in (24) represent the probability of the best user to be 
in the TMn  state, and is obtained as the stationary probability 
state associated with the channel matrix ,C MAXP , defined 
similarly to CP , whose derivation is trivial and omitted for 

lack of space. We considered a Poisson arrival process, 
characterized by the conditional probability 

 ( )|

( )
,    0,

!
n

i
j

a
Ln

a c

L
p e a

a
λλ −= >  (25) 

where λ  is the mean arrival rate and a  represents the number 
of packets arriving in the i th CTI to user j  during a single 
slot, of duration ( )/ i

n f jL T K= . The value of λ  is chosen as 

 
( )MAX

f

c U
UT

λ α= . (26) 

The parameter [0,1[α ∈  quantifies the traffic intensity 
with respect to the ITR and gives an insight on the load of the 
scheduling policy. 1α =  represents an unreachable limit for 
any scheduling policy in a practical system with finite buffer 
length. We considered three values, with {0.4,0.5,0.66}α ∈ . 
The buffer length is 10B = , while the maximum number of 
retransmissions is 3rN = . Thus, the size 2 2L L×π π  of the 
matrix P  is 528  528× . As in [6], we choose the TMs in 
order to guarantee the same PER = 0.05 for each TM different 
from TM0. It is meaningful to show only the behavior of the 
substates ( )i

jq  and ( )i
jr , instead of the whole vector π , because 

( )i
jc  is imposed by the channel matrix CP . 

Fig. 2 shows, for 20U =  and 0.66α = , the good 
agreement between the simulated and analytical stationary 
probability vectors of ( )i

jq  and ( )i
jr . Fig. 2 clearly illustrates 

the benefit for users with full buffer ( 10q B= = ) of being 
scheduled first, which drastically reduces the probability of 
overflow and consequently the PLR. Moreover, the probability 
of reaching the retransmission limit ( 3rr N= = ) is very low, 
with negligible effect on the PLR. The PLR is plotted in Fig. 3 
for different values of the traffic intensity parameter α  as a 
function of the number U  of users. A good agreement 
between theory and simulation is highlighted, unless for very 
low PLR values, which would require longer simulations. Fig. 
3 also shows that the scheduling policy succeeds in exploiting 
the MUD of the system, with a significant reduction of the 
PLR for increasing U  even for 0.66α = , and an impressive 
one for lower values of the system load α . 

Fig. 4 displays the average delay of the packets. A good 
agreement with simulations is observed also in this case, 
especially for higher numbers of users. It is worth noting that, 
for high U , the increase of the average delay with the number 
of users is approximately linear, with roughly the same slope. 
This implies that, for any α  and any 10U ≥ , adding new 
users causes the same increase in the average delay. In any 
case, Fig. 4 clearly highlights the benefits of the adopted 
scheduling policy with respect to the simplest possible one, 
which randomly schedules the users. 

Fig. 5 plots the normalized throughput of each single user 
for several values of α  and U . The normalized throughput is 
expressed as the ratio between the actual throughput and the 
ITR ( )MAXc U . In addition, Fig. 5 exhibits a good agreement 
between theory and simulations, especially for lower values of 
α . Moreover, it can be observed that the normalized 
throughput is largely independent from the number of users 
for 0.5α =  and 0.4α = , while for 0.66α =  the MUD 
benefits are highlighted by the increase of the throughput with 
the number U  of users: when 20U = , the throughput is close 
to its maximum theoretical value ( 0.66α = ), while for lower 
values of U  some throughput reduction is experienced. Thus, 
the good efficiency of our heuristic scheduling policy is 
confirmed even by Fig. 5. 
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VI. CONCLUSIONS 
We have proposed a simple scheduling algorithm to 

balance throughput and delay performance of a multi-user 
wireless system that exploits AMC and ARQ. The accuracy of 
the proposed theoretical analysis can be useful to maximize 
the throughput, similarly to [6], with a significantly reduced 
computational time with respect to extensive simulations. 
Further work can extend this approach to users with different 
QoS and traffic characteristics, as well as to provide 
performance comparisons with other scheduling strategies. 
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Fig. 2. (q) and (r) state distribution vectors, U =20, α = 0.66 
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Fig. 3. Packet loss rate for different values of U. 
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Fig. 4. Average delay for different values of U. 
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Fig. 5. Normalized throughput for different values of U 
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