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ABSTRACT
In this paper, we deal with channel estimation for Orthogonal
Frequency-Division Multiplexing (OFDM) systems. The channels
are assumed to be Time-Varying (TV) and approximated by a Ba-
sis Expansion Model (BEM). Due to the time-variation, the result-
ing channel matrix in the frequency domain is no longer diagonal,
but can be approximated as banded. Based on this band approx-
imation, we propose novel channel estimators to combat both the
noise and the out-of-band interference. Our claims are supported
by simulation results, which are obtained based on realistic TV
channels with a fairly high Doppler spread.

keywords: OFDM, BEM, time-varying channels, pilot-assisted
modulation.

1. INTRODUCTION

In mobile communications, a high vehicle speed causes the carrier
frequency to spread out. This so-called Doppler spread yields a
Time-Varying (TV) channel, whose channel taps vary with time.
Basis Expansion Models (BEMs) can be used to approximate the
time-variation within a certain observation window. Examples of
such BEMs are the Complex Exponential BEM (CE-BEM) in [1,
2] amongst others, the Generalized CE-BEM (GCE-BEM) in [3],
the Discrete Prolate Spheroidal BEM (DPS-BEM) in [4], and the
Polynomial BEM (P-BEM) in [5]. Other modeling approaches are
also reported, e.g., a first-order Gauss-Markov process is utilized
in [6]. Such a model is interesting for sequential time-domain pro-
cessing. When we deal with block transmission/precoding schemes,
such as an Orthogonal Frequency-Division Multiplexing (OFDM)
system, it is often more convenient to use a block-based channel
model like a BEM.

Focusing on the estimation of channels that are modeled by a
BEM, we basically only need to estimate the BEM coefficients. [2,
7] propose pilot-assisted estimators based on a CE-BEM assump-
tion. Usually, pilots can be clustered in the time-domain [7] to
combat the Inter-Symbol Interference (ISI). Likewise, for OFDM
systems, it is also useful to cluster the pilots in the frequency-
domain [2] to combat the Inter-Carrier Interference (ICI) induced
by the Doppler spread. Indeed, as pointed out in [8], most ICI is
concentrated in adjacent subcarriers, which implies that the chan-
nel matrix in the frequency-domain is roughly banded, a situation
comparable to the channel in the time-domain.

In this paper, we will adopt a similar pilot structure as in [2],
but consider channel estimation for a general BEM assumption.
However, as opposed to the CE-BEM channel that is strictly banded
in the frequency-domain [2], the ICI of other BEM channels de-
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grades only gradually, just like a realistic TV channel with a finite
number of subcarriers. In that case, if we artificially select a clear-
cut bandwidth for the channel matrix, the out-of-band entries will
give rise to interference. We propose three channel estimators to
combat this interference as well as the additive noise. We will
show that for each channel estimator the influence of the out-of-
band interference is distinctive, and as a result, the bandwidth se-
lection must be optimized for each channel estimator, individually.

Notation: We use upper (lower) bold face letters to denote ma-
trices (column vectors). (·)H represents complex conjugate trans-
pose (Hermitian). Ex{·} stands for the expected value with respect
to x. ⊗ represents the Kronecker product. † represents the pseudo
inverse. IN stands for the N ×N identity matrix. Further, we use
[x]p to indicate the (p + 1)st element of the vector x, and [X]p,q

to indicate the (p + 1, q + 1)st entry of the matrix X.

2. OFDM SYSTEM MODEL

Let us consider an OFDM system with N subcarriers. The OFDM
symbol s is first modulated to N subcarriers as s(t) = FHs,
where F stands for the N -point unitary Discrete Fourier Trans-
form (DFT) matrix with [F]p,q = 1/

√
Nexp(−j2πpq/N). Mak-

ing abstraction of the digital-to-analog and analog-to-digital con-
versions, s(t) is next concatenated by a cyclic prefix (CP), sent
over the channel, stripped from the CP, and finally demodulated.
The resulting data stream can be expressed as

y = FH(t)FHs + n = Hs + n, (1)

where H(t) and H := FH(t)FH denote the channel matrix in
the time-domain and frequency-domain, respectively, and n repre-
sents the noise in the frequency-domain. Defining h

(t)
n,l as the lth

time-domain channel tap at the nth sample, we assume the chan-
nel is Finite Impulse Response (FIR) with order L, i.e., h

(t)
n,l = 0

for l < 0 or l > L. If the CP length Lcp then satisfies Lcp ≥ L,
H(t) is ‘pseudo-circulant’ and free from inter-block interference
with [H(t)]p,q = h

(t)

p+Lcp,mod(p−q,N).

The channel taps are approximated by a BEM. Collecting the
time-variation of the lth channel tap within the considered OFDM
symbol in an N × 1 vector h

(t)
l := [h

(t)
Lcp,l, · · · , h

(t)
N+Lcp−1,l]

T ,

we can express h
(t)
l as h

(t)
l ≈ Bhl, where B := [b0, · · · ,bQ]

is an N × (Q + 1) matrix that collects Q + 1 orthonormal ba-
sis functions bq as columns, and hl := [h0,l, · · · , hQ,l]

T with
hq,l representing the qth BEM coefficient for the lth channel tap,
which is obtained in a Mean Square Error (MSE) sense and shall
remain invariant within the OFDM symbol. Adopting the same
BEM approximation for all the channel taps l = 0, · · · , L, we can
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rewrite (1) after some algebra as1

y =

Q∑
q=0

Dq∆qs + n, (2)

where Dq := Fdiag(bq)F
H and ∆q is a diagonal matrix ∆q :=

diag{FL[hq,0, · · · , hq,L]T } with FL standing for the first L + 1

columns of the matrix
√

NF.
It is noteworthy that (1) can implicitly include the effect of a

possible receiver window. In that case, the time-domain channel
matrix H(t) can be written as H(t) = diag{w}H̃(t), where w is
the adopted window and H̃(t) represents the unwindowed channel.
Such a receiver window has been recently reported in [9, 10] to
improve the performance of low-complexity equalizers that exploit
the banded approximation of the frequency-domain channel matrix
H. To approximate such a windowed channel, we differentiate two
options in the BEM design. First, if a CE-BEM is to be used, we
can just stick to the original design for the unwindowed case as
in [1]. For other BEMs, it turns out to be beneficial to adapt the
BEM to the window, i.e., we design B as

B := diag{w}B̃Q (3)

where B̃ yields one of the traditional BEM designs presented in
[3–5] and Q is a square matrix to ensure that the columns of B are
orthonormal. For more details on the BEM design see [11].

3. DATA MODEL FOR CHANNEL ESTIMATION

Instead of estimating the true bulky channel matrix H, we will esti-
mate the in total (L+1)(Q+1) BEM coefficients collected in h :=
[h0,0, · · · , h0,L, · · · , hQ,0, · · · , hQ,L]T . We assume there are M

pilot clusters of length Lp denoted as s
(p)
m , m = 0, 1, . . . , M − 1.

They are collected in the vector s(p) := [s
(p)T
0 , . . . , s

(p)T
M−1]

T , and
interleaved with information symbols collected in the information
symbol vector s(d).
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Fig. 1. The structure of Dq in relation with the pilots and the
received samples.

1From now on, we assume the BEM modeling error is negligible.

For such clustered pilots, it is up to the receiver to decide
which of the received samples must be used for channel estima-
tion. To clarify the notations that will come forth, we plot the
structure of Dq in Fig. 1. Obviously, the columns of Dq are re-
lated to the positions of the pilots and information symbols, which
operate on Dq through the diagonal matrix ∆q . The row positions
are related to the observation samples. For the mth pilot cluster
s
(p)
m = [[s]Pm , . . . , [s]Pm+Lp−1]

T , where Pm stands for its begin
position, let us consider the following observation samples:

ym := [[y]Pm+Bc , . . . , [y]Pm+Lp−Bc−1]
T . (4)

It is not hard to imagine that if Dq were ‘strictly’ banded with
2Bc+1 non-zero diagonals (this occurs if we assume a CE-BEM),
then ym would be the vector of maximal length that exclusively
depends on the pilot cluster s

(p)
m . In this sense, Bc can be inter-

preted as the assumed bandwidth of Dq as suggested in Fig. 1.
However, we must be cautious with this interpretation, because
Dq is not strictly banded for most BEMs. Later on, it will become
more clear that Bc actually provides a handle on the amount of
out-of-band interference that we want to take into account. Note
that Bc can even be negative, in which case the bandwidth physical
interpretation cannot be directly accounted for.

To formulate the above discussion in mathematical expres-
sions with notations indicated in Fig. 1, we obtain

ym =

Q∑
q=0

D(p)
q,m∆(p)

q s(p) +

Q∑
q=0

D(d)
q,m∆(d)

q s(d)

︸ ︷︷ ︸
dm

+nm, (5)

where D
(p)
q,m is an (Lp − 2Bc) × MLp matrix, representing the

hatched parts of Dq in Fig. 1; ∆
(p)
q is an MLp × MLp diago-

nal matrix, which is carved out of ∆q corresponding to the pilot-
carrying subcarriers; D(d)

q,m is an (Lp − 2Bc) × (N − MLp) ma-
trix, representing the shaded parts of Dq in Fig. 1; ∆

(d)
q is an

(N − MLp) × (N − MLp) diagonal matrix, which is carved
out of ∆q corresponding to the information-carrying subcarriers;
finally, nm stands for the noise related to ym. In the above equa-
tion, we have thus uncoupled the effect of the information symbols
from the pilots, and put it in a separate term dm. Collecting all the
observation samples in one vector y(p) := [yT

0 , · · · ,yT
M−1]

T and
denoting

P :=

⎡
⎢⎢⎣

D
(p)
0,0 · · · D

(p)
Q,0

...
. . .

...
D

(p)
0,M−1· · ·D(p)

Q,M−1

⎤
⎥⎥⎦

(
IQ+1 ⊗ diag(s(p))F

(p)
L

)
,

with F
(p)
L standing for the rows of FL corresponding to the posi-

tions of the pilots, we can easily derive

y(p) = Ph + d + n(p), (6)

where d := [dT
0 , · · · ,dT

M−1]
T and n(p) := [nT

0 , · · · ,nT
M−1]

T .
From the last equality, we observe that the observation samples are
not only contaminated by the additive noise n(p), but also by the
interference term d. The latter contains also the information h as
d = Gh, where

G :=

⎡
⎢⎢⎣

D
(d)
0,0 · · · D

(d)
Q,0

...
. . .

...
D

(d)
0,M−1· · ·D(d)

Q,M−1

⎤
⎥⎥⎦

(
IQ+1 ⊗ diag(s(d))F

(d)
L

)
,
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with F
(d)
L standing for the rows of FL corresponding to the posi-

tions of the information symbols.
Clearly, the pilot-related P and the interference-related G both

have the dimension M(Lp − 2Bc)× (Q + 1)(L + 1). Intuitively,
one would like to reduce the power of the interference d by setting
Bc as large as possible. The same idea is adopted in [8] though
the authors address the problem from a different point of view. To
explain this using the physical interpretation of Bc: a larger Bc

corresponds to a more accurate band approximation, and thus to a
smaller out-of-band interference. However, at the same time when
Bc is enlarged, less observation samples are taken into account,
leading to a ‘fatter’ P . This is usually detrimental if we are to
deploy a linear channel estimator.

4. CHANNEL ESTIMATION

In the following, we assume the information symbols s(d) and the
noise n(p) are both zero-mean and uncorrelated with each other.
The channel vector h will be treated either as a random variable
or a deterministic variable. This leads to three different channel
estimators. The performance of each channel estimator is sensitive
to the choice of Bc, which will be examined individually.

4.1. The Linear Minimum Mean Square Error (LMMSE) Es-
timator

Assuming h to be stochastic and uncorrelated with s(d) and n(p),
we can find a linear filter W to minimize the MSE between the
estimated and true BEM coefficients. [11] gives its expression as

ĥLMMSE = RhPH(PRhPH + RI)−1y(p), (7)

where RI := Rd+R
(p)
n with Rd := Eh,s(d){ddH} and R

(p)
n :=

En(p){n(p)n(p)H} whose derivations are given in [11]. Note that
although (7) is similar to the canonical LMMSE estimator [12],
we underline the difference that in the considered case, the in-
terference term contains the information h itself and is mitigated
by the LMMSE estimator resorting to the Second-Order Statistics
(SOS) of the channel. From (7), we can show that the MSE of this
LMMSE estimator is:

MSELMMSE = trace{(PHR−1
I P + R−1

h )−1}. (8)

Since the choice of Bc determines the content of both P and RI ,
(8) implies that the LMMSE’s performance is subject to Bc.

4.2. The Least Squares Estimator

The Least Squares (LS) estimator treats h as a deterministic vari-
able and assumes further no knowledge about the channel and
noise statistics:

ĥLS = P†y(p) = h + P†(d + n(p)). (9)

For the LS estimator, we can easily derive its MSE as

MSELS = trace{P†RIP†H}, (10)

Compared to (8), one can observe that the LS estimator’s perfor-
mance is also influenced by Bc, but in a different manner.

4.3. An Iterative Best Linear Unbiased Estimator (BLUE)

From (6), a BLUE can be derived [12, Appendix 6B] by treating
the interference d and noise n(p) as a whole such that

ĥBLUE =
(PHR̃−1

I (h)P)−1PHR̃−1
I (h)y(p), (11)

with R̃I(h) := Es(d),n(p){(d + n(p))(d + n(p))H} = R̃d(h) +

R
(p)
n . Here R̃d(h) is the covariance matrix of d by treating h as

deterministic R̃d(h) := Es(d){ddH}. For more details, see [11].
However, (11) is not implementable since its computation en-

tails the information of h itself. A recursive approach is therefore
proposed: suppose at the kth iteration, an estimate for h is avail-
able and denoted as ĥ

(k)
BLUE. Next, we use this estimate to update

the covariance matrix R̃I(h), which is in turn used to produce the
BLUE for the next iteration and so on:

ĥ
(k+1)
BLUE =

(PHR̃−1
I (ĥ

(k)
BLUE)P

)−1PHR̃−1
I (ĥ

(k)
BLUE)y

(p), (12)

The convergence can be easily ensured by initializing the iteration
with ĥ

(0)
BLUE = 0. In that case, we already obtain a weighted LS es-

timate ĥ
(1)
BLUE =

(PH(R
(p)
n )−1P)−1PH(R

(p)
n )−1, which could

be close to the global minimum if the interference term is not too
eminent. Note that a similar idea is also echoed in [13] amongst
others, though in the context of superimposed training for time-
invariant channel estimation.

Assuming that ĥ
(k)
BLUE → ĥBLUE, we use (11) to find a lower

bound on the estimator’s MSE

MSEBLUE = Eh{trace
(
(PHR̃−1

I (h)P)−1)}. (13)

Because the expression above is difficult to evaluate in closed form,
we need to resort to the Monte Carlo method. As will be evident
later on, the MSE of the BLUE also depends on the choice of Bc.

4.4. Optimization of Bc

First of all, we restrict the possible values of Bc to a certain range
using the following lemma (for a proof see [11]):
Lemma 1 Practical values of Bc must satisfy:

Lp

2
− N

2M
≤ Bc ≤ Lp

2
− (L + 1)(Q + 1)

2M
, (14)

as we recall that M is the number of pilot clusters and Lp is the
size of each pilot cluster.

We optimize Bc within the above range in terms of the MSE
expressions given in (8), (10) and (13), which are defined for the
LMMSE, LS, and the BLUE, respectively. In other words, we
solve Bc = arg min

{Bc}
MSE. It is difficult to find a closed-form solu-

tion for this problem. However, [11] shows by simulation that the
MSE versus Bc curve for the LS estimator is monotonous descend-
ing, while the curves for the LMMSE estimator and the BLUE
are both monotonous ascending, which implies that we can simply
choose the largest possible Bc for the LS estimator and the small-
est possible Bc for the LMMSE estimator and the BLUE. To ex-
plain this, we recall that a larger Bc is equivalent to a smaller out-
of-band interference power. This is in favor of the LS estimator,
which is not good at suppressing the interference due to the lack
of statistical knowledge. For the LMMSE estimator and BLUE on
the other hand, the out-of-band interference is not a big concern,
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and we could therefore minimize Bc in order to process more ob-
servation samples. However, since the computational complexity
of the BLUE increases significantly for a decreasing Bc, we gen-
erally take the optimal Bc for the BLUE somewhere in the middle
of the range in (14). More details about this issue can be found
in [11].

5. NUMERICAL RESULTS

We test the proposed algorithms for realistic Jakes’ channels. We
assume an FIR channel with L + 1 = 6 taps. The variation of
the channel taps is determined by the Doppler frequency, which
is normalized to the subcarrier spacing fD := vfc

c
TsN , where v

denotes the vehicle’s velocity, fc the carrier frequency, TsN the
OFDM symbol duration, and c the speed of light. Further, we
window the received signal by the MBAE-SOE window proposed
in [9], which is a sum of three exponentials. To approximate such
a windowed channel with a GCE-BEM, we set Q = 4 and design
the GCE-BEM following (3).

We assume the OFDM system has N = 256 subcarriers,
where roughly 80% of the subcarriers are used for transmitting
information symbols that are QPSK modulated. The remaining
subcarriers are reserved for pilots, which are grouped in M = 6
equidistant clusters, each containing Lp = 9 pilot tones. Inside
each cluster, we adopt the pilot scheme used in [2], where a non-
zero pilot is located in the center of the cluster with zero guard
bands on both sides.

Test Case 1. The estimator performance. In line with the
analysis in Sect. 4.4, we select Bc = −16 for the LMMSE esti-
mator, Bc = 2 for the LS estimator, and Bc = −3 for the BLUE,
and inspect their channel estimation performance for two types
of TV channels (i) fD = 1, and (ii) fD = 0.2. The proposed
estimators are compared in Fig. 2 with the channel estimator pre-
sented in [2], which resembles the LMMSE estimator but is based
on a CE-BEM assumption. Despite its MSE optimality proven
in [2], the CE-BEM based estimator is inferior to the proposed
LMMSE estimator and BLUE due to a larger BEM modeling er-
ror with respect to the considered GCE-BEM. The performance is
also compared with the CRB (see [11] for a derivation). The CRB
is obtained based on many Monte Carlo runs, thereby exploring
the channel statistics. It is clear that the performance of the BLUE
is very close to the CRB.

Test Case 2. Equalization performance based on the esti-
mated channel. The influence of the channel estimation error on
the BER performance of the considered OFDM system is exam-
ined next. To this end, we apply the banded-MMSE (B-MMSE)
equalizer proposed in [14], which is characterized by a good com-
promise between performance and complexity. For the sake of
comparison, we also list the equalization performances, which are
based on the estimated CE-BEM channel and the perfect CSI.
From Fig. 3, we can observe that the equalization performance to a
great extent follows the channel estimation performance depicted
in Fig. 2.
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