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Abstract –The Minimum Mean Square Error (MMSE) multi-
user detector has received great attention in the last years as the
optimum linear solution for reducing the Multiple Access Inter-
ference (MAI) in DS-CDMA systems. In asynchronous frequency
selective channels the covariance matrix estimation errors may
introduce BER performance degradation. Aim of this paper is to
outline such degradation and to improve the MMSE receiver per-
formance by convenient covariance matrix estimations. Two dif-
ferent approaches are introduced. Simulation results are shown in
order to validate the effectiveness of the proposed techniques.

Keywords – DS-CDMA, Multiuser Detection, MMSE, Spectral
Decomposition, Multiple Access Interference.

I. INTRODUCTION

The presence of MAI in DS-CDMA systems makes attract-
ing the use of multiuser receivers. The MAI can be exploited to
improve the performance by using banks of symbol matched
filters as proposed in [1]. Such multiuser detectors are charac-
terised by very cumbersome front-ends, because the number of
matched filters (or RAKEs in multipath channels) depends on
the active users number. An alternative architecture, that uses
only a single chip matched filter and a sampler at the chip rate,
is not only characterised by a greater flexibility, but it also al-
lows channel estimation by blind techniques. The main benefit
of the blind methods is the bandwidth saving due to the absence
of training sequences, and it becomes significant in time-
varying channels. Since the blind multiuser detection algo-
rithms are characterised by a very high computational complex-
ity, great attention is dedicated to the class of linear receivers. It
is well known that the linear MMSE receiver can be obtained
multiplying the inverse of the covariance matrix by the desired
user total channel (comprehensive of multipath and spreading)
[2]. The estimation errors of the covariance matrix of the signal
received through the frequency selective fading channels may
introduce BER performance degradation. This problem wors-
ens for time varying channels, because the estimate can be done
by averaging on few bits. Moreover, the estimation errors are
amplified by the inverse operation, particularly at high SNR,
producing bit error rates remarkably higher than those obtained
in the ideal situation.

This paper proposes to reduce such errors by two ap-
proaches. Both of them rely on the spectral decomposition of
the covariance matrix that is also used for the multiuser channel
estimation. The first one is based on perturbing the estimated
eigenvalues leading to a CMOE type receiver [3], while the
other one is based on a successive re-estimation of the covari-
ance matrix by exploiting the estimated channels of all users.

II. SYSTEM MODEL

The multiple-input multiple-output (MIMO) baseband chan-
nel model introduced in [4] is herein summarised. The transmit-
ted signal of the kth user, in a DS-CDMA system with K
users, is expressed by (1)
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where T is the symbol duration,
kA and ( )ks t are the amplitude

and the spreading waveform of the kth user respectively,
kτ is

the kth user relative delay ( 0 k Tτ≤ < ), I is the number of

transmitted symbols, and ( )kb i is the ith symbol of the kth user.

It is assumed that ( )kb i belongs to a set of indipendent

equiprobable { }1± random variables. The spreading waveform

( )ks t can be expressed by (2)
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where N is the processing gain, /cT T N= is the chip dura-

tion, ( )tψ is the normalised rectangular chip waveform of dura-

tion cT and ( )kc j is the { }1± jth value of the kth user binary

code sequence. We suppose to deal with slowly time varying
channels such that they can be considered constant during the
transmission of P symbols ( )P I≤ . The kth user channel is

denoted by (3)
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where Q is the number of paths, ,q kτ and ,q kα are respectively

the delay and the complex amplitude of the qth path,

1, 2 1, 2,
maxq qk q k q k

τ τ∆ = − is the maximum delay spread, ( )tδ
is the Dirac function. When the channels are supposed to be
constant, the received signal component of the kth user is
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The total received signal is the superposition of the K signals
( )ky t and a complex zero-mean white Gaussian noise ( )v t

with power spectral density 2σ . The received signal ( )r t , ex-
pressed by (5), is first filtered by a chip-matched filter and then
sampled at the chip rate 1/ cT , obtaining (6)
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The sampling instant is selected arbitrarily, leading to a mean
power loss of 1.76 dB with respect to a parallel symbol
matched filter architecture characterised by perfect time syn-
chronisation [5]. The discrete-time signal component due to the
kth user is expressed by (7)
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where ( )R tψ is the autocorrelation function of ( )tψ . By the

following expressions
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it is possible to obtain (8), where kL is the duration in symbol

intervals of the kth channel taking into account the kτ delay
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If the discrete-time channel coefficients ( )nkh i are grouped in

matrices ( )H l , the received samples ( )nr l in [ 1]N × vectors

( )r l , and the symbols ( )kb l in [ 1]K× vectors ( )b l , by the

notation in [4], the following MIMO relation (9) is obtained
( ) ( ) ( ) ( ) ( )( )r l y l v l H l b l v l= + = ∗ + . (9)

If m successive vectors ( )r l are stacked to form a [ 1]Nm×
( )m lr vector, the expression (10) is obtained

( ) ( ) ( )m m m ml H l l= +r b v , (10)

where mH is the generalised block Sylvester matrix of dimen-

sion ( )[ 1 ]Nm K m L× + − and max{ }kL L= (see [4] for

more details). The received signal autocorrelation matrix is de-
fined by (11)

{ }( ) ( )Hr m mE l l=C r r . (11)

Finally, it is useful to define [ (0)  ( 1)]Tk k kh h LN= −h ! and

[ (0) ( 1) 0  0] / ,

[ (0) ( 1)] / , .

T
k k k

k T
k k k

h h LN m L
h

h h mN m L

 − >=  − ≤

h

h

! !

!!
(12)

III. MMSE MULTIUSER RECEIVERS

A. Ideal MMSE and estimated MMSE receivers
If the transmitted data are BPSK mapped, the receiver deci-

sion rule is expressed by (13)
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where the km vector represents the detector. The MMSE re-

ceiver is obtained by minimising ( ) 2| ( ) |H
mk k

E b l l − m r ,

which leads to expression (14)

1
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However, in practical situations, neither kh nor rC are

known. The channel kh can be estimated either by the aid of

training sequences or by blind techniques [4] [6]. In the present
paper the blind method proposed in [4] is considered, because
the receiver expression km can be obtained at almost no extra

computational cost if the channel has been estimated by the
same approach. The subspace decomposition of the rC matrix

is shown in the following expression (15)
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and ( )1d K m L= + − is the signal subspace dimension.

Since the channel kh lies in the signal subspace, a scaled

version of kh can be recovered solving equation (16) in the

least square sense [4] when only an estimated version of H
NU is

known (for example when rC is estimated by (19))
H

mNH =U 0 . (16)

The inverse of rC can be easily obtained by the spectral de-

composition (15) as expressed by (17)
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r
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Taking (16) into account, it is clear that only the signal sub-
space is effective to express (14) that becomes (18)
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Nevertheless, when rC is replaced by its estimated version1

(19)
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the estimation errors will not be negligible if the P averaging
factor is low. It is noteworthy to remind that, in practical appli-
cations, it is not possible to increase P as we like in order to
reduce the estimation errors, because the channels cannot be
considered constant due to the mobility of the users.

The estimation errors effect becomes larger when the eigen-
value spread of rC increases [7], as it happens if many users

are transmitting at high SNR. Therefore the estimated MMSE
receiver has to be expressed as function of the true quantities
and of the estimation errors, as in equation (20):

1 The subspace decomposition of the estimated covariance matrix (19)
gives the maximum likelihood estimate of the eigenvalues and
eigenvectors of rC [5].
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B. CMOE receiver
An approach for reducing the ,0 ,1 ,2

|| ||k k k+ +e e e norm is to

add a positive number ν to the signal subspace eigenvalues.
Thus, the new receiver kc is expressed by (21)
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The error norm || ,1 ,2k k+e e" " || decreases by increasing ν as well

as the denominators of (21). However, at the same time ,0ke"
approaches to

k−m , thus suppressing the receiver useful com-

ponent. As a consequence, the ν parameter has a negative ef-
fect for low errors | iλ∆ |, || i∆u || and || kh∆ ||, because the

suppression of
km is its main effect (the norm of

,1 ,2
( )k k+e e

already being small). On the contrary, if such errors are consid-
erably high, a satisfactory reduction of || ,1 ,2k k+e e" " || can be ob-

tained, avoiding an excessive decrease of || ,0k k+m e" || for ν
values not too large. It is noteworthy that:

i) The ν parameter allows the eigenvalue spread reduction
from max min,

/ Sλ λ to max min,
( )/( )Sλ ν λ ν+ + , where
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,

� � � H
r S S S

ν+C U U
can be considered a biased estimate of ,r SC .

ii) In absence of estimation errors, the receiver
kc includes a

huge class of linear receivers: for 0ν = it is the MMSE re-
ceiver, while for ν → +∞ it tends to the RAKE receiver.
Indeed, if 1max{ ,..., }dν λ λ>> , it results that
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If negative ν values are considered, also the decorrelator
receiver falls in this class ( 1ν = − ).

iii) The solution obtained by adding ν is the same which re-
sults by the constrained minimisation (22)
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The proposed receiver is therefore a CMOE receiver. How-
ever, the correlator norm constraint is introduced in [3] and
in [8] to take into account the signature waveform mismatch

kh∆ , which norm decreases as SNR increases. On the con-

trary, in this case i∆u and iλ∆ are the main errors because

the problem originates from the �
rC inversion and it exists

also when || || 0kh∆ ≈ [7].

Nevertheless, like in [8], the main difficulty is the choice of
ν , because the optimum value should depend not only on the
system ill-conditioning (eigenvalue spread of rC ), but also on

the amount of the estimate errors (i.e. on the P parameter and
on the algorithm used for channel estimation). Algorithms in
order to select the optimum value of ν are still under study.

C. Improved MMSE receiver
An alternative estimate of the rC matrix can be obtained

substituting (10) in (11) which becomes (23)
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because the data and the noise are uncorrelated, with covari-
ance expressed by (24)

{ }( ) ( )Hm m dE l l =b b I , { } 2( ) ( )Hm m NmE l l σ=v v I . (24)

Therefore it is possible to obtain an alternative estimate of rC
by means of (25)
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with �
mH obtained by solving (16) in the least square sense.

The above technique was suggested by observing that the norm
of kh∆ can be very low and it decreases when the SNR in-

creases. Consequently, rC" should be a good estimate of rC
and the new receiver expression becomes (26)

1 �
krk
h−=i C" . (26)

It is noteworthy that:

i) The receiver
ki needs to know the channels �

mH of all users

and consequently it can be implemented only at the base
station. The receivers expressed by (20) and (21) can in-
stead be applied also at the mobile station, because they do

not depend on �
jh for j k≠ .

ii) The computational complexity increases with respect to re-
ceivers (20) and (21). Indeed (26) require the inversion of

the new covariance matrix rC" , while receivers (20) and

(21) exploit the same spectral decomposition of �
rC that is

used to recover the channels �
jh .

iii) The discrete noise power has to be estimated making use of

the noise subspace eigenvalues of �
rC , as expressed by (27)
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IV. SIMULATIONS RESULTS

Gold sequences of length 31N = have been chosen for the



short spreading codes ( )kc j . The chip rate has been fixed to

1/ 8.192cT = Mcps and consequently the users bit rate is ap-

proximately equal to 264 kbps. The channels model is compli-
ant with the pedestrian B channel of [9]. The chosen chip rate
1/ cT and processing gain N lead to a maximum delay spread

k∆ that is little longer than one symbol duration. The uplink

situation is considered with delay
kτ uniformly distributed in

[0, )T . However, both kτ and
k
∆ of each user are assumed

known by the receiver within a chip period, and therefore the
maximum channel order L is assumed known as in [4]. The
window size m has been selected considering the identifiability
conditions (28) [4]:
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Most of the simulated situations lead to 2m = or 3m = .
It is well known that all blind estimation techniques can re-

cover the channels up to a complex scalar factor [4] [5]. In this
paper, the phase of the maximum magnitude coefficient of the
discrete-time channel is supposed to be known. The covariance

matrix �
rC has been estimated by using P = 300 bits with an

estimation window 1.1T PT∆ = ≈ ms. For a mobile trans-
mitter with speed 30V ≤ Km/h and a carrier frequency

2 GHzf = , the classic Clarke channel autocorrelation func-

tion is ( )0 2 / 0.96J V Tπ λ∆ ≥ and, therefore, the channels

can be considered constant as supposed in section II.
The SNR shown in the figures is the one of the weakest user

(user 1) and it is defined as  

 

2 2
1SNR /A σ= . The Normalised

Root Mean Square Error (NRMSE) is defined by (29)
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where 300runsN = is the number of independent simulation
runs. The simulated NRMSE shown in Fig. 1 outlines that an
acceptable channel estimation (i.e. NRMSE < 0.15) is achieved
with a SNR greater than 13 dB (18 dB) with 5 users (10 users).

The BER performance of all the MMSE receivers in differ-
ent scenarios is shown in Figs. 2-4. In each figure it is evident
the great SNR penalty of the MMSE receiver (20) with respect
to the ideal one (14) (ideal estimations). This fact could have
been predicted for low values of the SNR, where the channel
estimation is not so accurate (for P = 300), but it is a little bit
surprising for higher values of the SNR, where the channel
NRMSE tends to zero as shown in Fig. 1. This behaviour, con-
sequently, depends on the estimation of the inverse covariance
matrix 1

r
−C that appears in the multiuser detector expression

(14). Such penalty tends to increase for increasing SNR, since
the estimation error of 1

r
−C is higher at high SNR [7].

The optimal CMOE receiver (i.e. the receiver in which the
optimum ν for each SNR value is chosen in order to minimise
the BER) is able to recover some of the power lost by the esti-
mation of 1

r
−C . In all scenarios, the optimal CMOE receiver

exhibits a SNR gain with respect to the classic estimated
MMSE receiver. This gain increases for high SNR values, even
if it also increases the SNR penalty with respect to the ideal
MMSE receiver. The first fact is caused by the eigenvalue
spread reduction obtained by the ν parameter, while the sec-
ond one depends on the biasing effect introduced by the ν pa-
rameter on the rC estimation (see section III.2).

On the contrary, the improved MMSE receiver, which sig-
nificantly outperforms also the optimal CMOE one, exhibits a
BER performance that is closer to the ideal one as the SNR in-

creases. This fact is easy to justify because the improved rC" is

obtained by (25) through the estimated channel matrix �
mH ,

whose estimation error decreases for increasing SNR, as shown
in Fig. 1. As a consequence, even better performance could be
achieved for low SNR either using better estimation techniques
or increasing the P parameter (up to the maximum value that
is allowed by the channel coherence time).

It is noteworthy that, at low SNR, the BER in near-far condi-
tions (MAI = 20 dB) outperforms the one in the power control
situation (MAI = 0 dB). This fact is particularly evident for the
improved MMSE receiver, that exploits the higher power of the
other users for a better multiuser channel estimation.

Moreover, it should be pointed out that the optimal CMOE
receiver is not effective in near-far situations (Fig. 3) as in ideal
power control situations (Fig. 2). This fact does not depend on
the channel estimation (as confirmed by the good performance
of the improved MMSE receiver) but on the covariance matrix
eigenvalue spread that is higher in near-far situations because
the users different power transforms in different signal eigen-
value magnitude. The optimum value of the ν parameter de-
pends on the proposed scenario (users number K , MAI, SNR
and users power). The BER performance (for fixed SNR) as
function of the parameter 2( / )ν σ is shown in Fig. 5, where it

is outlined the existence of an optimum value. The values on
the abscissa axis are not uniformly spaced and they are com-
pressed by an arctangent-logarithmic function for graphical
convenience. Finally, Fig. 6 shows the optimum 2( / )ν σ pa-

rameter as function of the user SNR, outlining an increasing
linear dependence for the higher SNR values. This fact is not
surprising, because the receiver expression (18) only depends
on the signal subspace and, if 2σ is fixed, an increase of the
SNR corresponds to an increase of the signal subspace eigen-
values and consequently the correction should scale in a similar
manner. On the contrary, when the SNR is low, the ν parame-
ter has to compensate for the channel estimation errors, too.

V. CONCLUSIONS

The effects of noisy covariance matrix estimation on the
BER performance degradation of MMSE multiuser detector
have been outlined. The two proposed techniques to counteract
for such phenomenon seem to be effective as confirmed by
simulations. Further analytical investigations are required in
order to obtain an automatic strategy to choose the optimum
value for the parameter ν , which mainly depends on the user
SNR and on the number of active users.
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Fig. 4. BER Performance - 10 users - ideal power control
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