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Abstract—We present an analytical approach to evaluate the er-
ror probability of orthogonal frequency-division multiplexing 
(OFDM) systems subject to carrier frequency offset (CFO) in 
frequency-selective channels, characterized by Rayleigh or Ri-
cian fading. By exploiting the Gaussian approximation of the in-
tercarrier interference (ICI), we show that the bit-error rate 
(BER) for quadrature amplitude modulation (QAM) can be ex-
pressed by the sum of few integrals, whose number depends on 
the constellation size. Each integral can be evaluated numerically, 
or, in Rayleigh fading, by using a series expansion that involves 
generalized hypergeometric functions. Simulation results illus-
trate that the theoretical analysis is quite accurate, especially for 
Rayleigh channels. 

Keywords-OFDM; carrier frequency offset; frequency-selective 
fading channels; BER 

I. INTRODUCTION 
Orthogonal frequency-division multiplexing (OFDM) is a 

technique widely used for wireless applications [1]. Due to its 
multicarrier feature, OFDM systems are more sensitive than 
single-carrier systems to frequency synchronization errors [2]. 
Indeed the carrier frequency offset (CFO), which models the 
mismatch between the transmitter and receiver oscillators (or 
represents the Doppler shift introduced by the time-varying 
channel), gives rise to intercarrier interference (ICI), thereby 
destroying the orthogonality of the OFDM data. 

In linearly modulated OFDM systems, the performance 
degradation caused by the CFO is often evaluated in terms of 
signal-to-noise ratio (SNR) loss [2]-[4]. The degradation due to 
the CFO is also analyzed in [5]-[7] in terms of bit-error rate 
(BER) or symbol-error rate (SER). Although the BER charac-
terizes the performance degradation more accurately with re-
spect to the SNR loss, [5], [6], and [7] consider the CFO effects 
only in additive white Gaussian noise (AWGN) channels, 
whereas OFDM systems are usually designed to cope with fre-
quency-selective fading [1]. 

In this paper, we present a BER analysis when the CFO 
impairs an OFDM system in frequency-selective Rician fading 
channels. By exploiting the Gaussian approximation of the ICI, 

we show that the BER for quadrature amplitude modulation 
(QAM) can be obtained as the sum of few integrals, whose 
number depends on the constellation size. Each integral can be 
computed by numerical techniques, or, in Rayleigh fading, re-
placed by a series expansion that involves generalized hyper-
geometric functions. Simulation results are used in order to 
validate the theoretical analysis. 

II. OFDM SYSTEM MODEL 
An OFDM system with N  subcarriers and a cyclic prefix 

of length L  is considered. Using a notation similar to [8], the 
lth transmitted block can be expressed as 
 CP[ ] [ ]Hl l=u T F s , (1) 
where [ ]lu  is a column vector of dimension P N L= + , F  is 
the N N×  unitary fast Fourier transform (FFT) matrix, defined 
by 1/ 2

,[ ] exp( 2 ( 1)( 1) / )m n N j m n Nπ−= − − −F , [ ]ls  is the 
1N ×  vector that contains the data symbols, and 

 CP CP[ ]T T T
N=T I I  is the P N×  matrix that inserts the cyclic pre-

fix, where CPI  contains the last L  rows of the identity matrix 
NI . The data symbols, assumed to be independent and identi-

cally distributed with power 2
S 1σ = , are modulated using      

M-ary square QAM. 
After the parallel-to-serial conversion, the stream 

[ ] [ [ ]]nu lP n l+ = u , where [ [ ]]nlu  is the nth element of [ ]lu , is 
transmitted through a multipath channel, whose discrete-time 
equivalent impulse response is 

 S
1

[ ] ( )
Q

q q
q

h i R iTψζ τ
=

= −∑ , (2) 

where Q  is the number of paths of the channel, qζ  and qτ  are 
the complex amplitude and the propagation delay, respectively, 
of the qth path, ( )Rψ τ  is the triangular autocorrelation function 
of the rectangular pulse shaping waveform ( )tψ , and 

S /T T N=  is the sampling period, being 1/f T∆ =  the subcar-
rier spacing. Throughout the paper, we assume that the channel 
amplitudes { }qζ  are Gaussian distributed, giving rise to 
Rayleigh or Rician fading, and that the maximum delay spread 

max max{ }qτ τ=  is smaller than the cyclic prefix duration 
CP SLTτ = , i.e., [ ] 0h i =  for i L> . 

At the receiver side, the samples obtained after matched fil-
tering can be expressed as [9] 
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0
[ ] [ ] [ ] [ ]

L
j f pT

i
x p e h i u p i w pπ

=

= − +∑ , (3) 

where 0f  is the CFO, and [ ]w p  represents the AWGN. As-
suming that the timing information is available at the receiver, 
the P  received samples relative to the lth OFDM block are 
grouped in the vector [ ]lx , thus obtaining [9] 

 2 /
0 1[ ] ( [ ] [ 1]) [ ]j lP Nl e l l lπε= + − +x D H u H u w , (4) 

where [ [ ]] [ ]nl x lP n= +x , 0f Tε =  is the normalized CFO, D  
is a P P×  diagonal matrix defined by ,[ ]n n =D  
exp( 2 ( 1) / )j n Nπε − , and 0H  and 1H  are P P×  Toeplitz ma-
trices defined by 0 ,[ ] [ ]m n h m n= −H  and 1 ,[ ]m n =H  

[ ]h m n P− + , respectively [8]. By applying the matrix 
 CP [ ]N L N×=R 0 I  to [ ]lx  in (4), the cyclic prefix (and hence the 

interblock interference) is eliminated, thus obtaining, by (1), 
the 1N ×  vector [9] 
 2 ( ) /

CP[ ] [ ] [ ] [ ]j lP L N Hl l e l lπε += = +y R x DHF s v , (5) 
where D  is an N N×  diagonal matrix expressed by 

,[ ] exp( 2 ( 1) / )n n j n Nπε= −D , and CP 0 CP=H R H T  is the circu-
lant channel matrix expressed by , mod[ ] [( ) ]m n Nh m n= −H . By 
applying the FFT at the receiver, we obtain [ ] [ ]l l=z Fy , which 
by (5) can be rearranged as 
 2 ( ) /[ ] [ ] [ ]j lP L Nl e l lπε += +z ΦΛs n , (6) 
where H=Φ FDF  is the circulant matrix that produces the ICI, 

H=Λ FHF  is the diagonal matrix containing the frequency-
domain channel, with elements expressed by 

 2 ( 1) /
,

0
[ ] [ ]

L
j i n N

n n n
i

h i e πλ − −

=

= = ∑Λ , (7) 

and CP[ ] [ ] [ ]l l l= =n Fv FR w  represents the AWGN. From the 
above definitions, it is straightforward to verify that 

   ( )
mod

1(( ) )mod
,

mod

sin( (( ) ))
[ ]

sin (( ) ) /
N

Nj n mN N
m n

N

n m
e

N n m N
π επ ε

π ε

− − +− +
=

− +
Φ , (8) 

and that   N=λ Fh , being [0],..., [ 1]]Th h N= [ −h  and 
  1 ,..., ]T

nλ λ= [λ  the channel vectors in the time domain and 
frequency domain, respectively. 

Assuming perfect channel state information at the receiver 
side, after compensating for the phase-shift term 

[ ] exp( 2 ( ) / ) exp( ( 1) / )l j lP L N j N Nϕ πε πε= + −  that is com-
mon to all the subcarriers, and after performing the zero-
forcing equalization, from (6) we obtain 
 1 1

EQ EQ[ ] [ ] [ ] [ ] [ ]l l l l lϕ ∗ − −= = +z Λ z Λ MΛs n , (9) 

where exp( ( 1) / )j N Nπε= − −M Φ  contains the CFO, and 
1

EQ[ ] [ ] [ ]l l lϕ ∗ −=n Λ n . The decision over EQ[ ]lz  is successively 
done according to the proper constellation size M . 

III. BER OF OFDM WITH CFO IN FADING CHANNELS 
In order to evaluate the error probability, without loss of 

generality, we focus on the signal received on the first subcar-
rier, dropping the block index l for the sake of simplicity. We 
consider a scaled version of the decision variable, obtained 
from (9), as expressed by 

 
         1 1 EQ,1 1 1 1 1

2

N

n n n
n

z z m s m s nλ λ λ
=

= = + +∑ , (10) 

where 
 EQ,1 EQ 1[ [ ]]z l= z , [ [ ]]n ns l= s , 

  1 1[ ] [ [ ]]n l lϕ ∗= n , and 

 ( )  

1( 1)

1,
sin( ( 1 ))[ ]

sin ( 1 ) /

Nj n
N

n n
nm e

N n N
ππ ε

π ε

− −− += =
− +

M  (11) 

represents the ICI coefficient when 2,...,n N= , and the at-
tenuation factor of the useful signal when 1n = . 

One possible approach to obtain the BER (or equivalently 
the SER) consists of two steps. In the first one, we have to cal-
culate the conditional bit-error probability BE ( ,P )s λ  as a func-
tion of the symbols in 

  1[ ,..., ]T
ns s=s  and of the channel ampli-

tudes in 
  1 ,..., ]T

nλ λ= [λ . In the second step, BE ( ,P )s λ  has to 
be integrated over the joint probability density function (pdf) 

S,Λ S Λ( , ( (f f f) = ) )s λ s λ  of the symbols and the channel ampli-
tudes, as expressed by 

 BE S Λ
,

BER ( , ( (P f f d d= ) ) )∫
s λ

s λ s λ s λ . (12) 

The main difficulty in evaluating (12) is due to the presence of 
the N-dimensional pdf Λ (f )λ . Indeed, when dealing with mul-
tidimensional integrations, it would be easier to evaluate many 
separated single-variable integrals, one at a time. However, 
from (7), it is evident that the N  variables in λ  are correlated 
with one another, because the frequency-domain channel is ob-
tained by combining at most 1L +  random variables. There-
fore, Λ (f )λ  cannot be expressed as a product of N  separate 
one-dimensional functions. In order to overcome this problem, 
we bypass the multidimensional integration by using the equal-
ity given by 

  1 1Λ 1 1Λ|( ( | (f f fλ λ λ) = ) )λλ λ , where 
 

 1 1Λ| ( |f λ λ )λ  
is the conditional pdf of 

  2 ,..., ]T
nλ λ= [λ  given 

 1λ , and 
 

 1 1(fλ λ )  is the pdf of 
 1λ . Therefore, (12) becomes 

 
   

 

 

1

1

BE 1 1 1BER ( (P f dλ
λ

λ λ λ= ) )∫ , (13) 

 
  

 1BE 1 BE 1 SΛ|
,

( ( , ( | (P P f f d dλλ λ) = ) ) )∫
s λ

s λ λ s s λ . (14) 

In the following, we show that it is possible to approximate 
 BE 1(P λ )  without solving the integral in (14). Hence, by (13), 

the BER is given by an integral over a single complex variable. 

A. BER Evaluation in Rayleigh Fading Channels 
When the channel experiences Rayleigh fading, the channel 

taps { [ ]}h i , and hence the quantities { }nλ  in (7), are zero-
mean complex Gaussian random variables. In this case, the 
conditional pdf 

 
 1 1Λ| ( |f λ λ )λ  is an ( 1N − )-dimensional Gaus-

sian with mean 
 

|λ1λη  and covariance 
 

|λ1λC  expressed by [10] 
 

      

1
1| cλ λλ λλ

1 11 1

−=λ λη c , (15) 

 
        

1
|

Hcλ λλ λ λ1 11 1 1

−= −λ λ λ λ λC C c c , (16) 
where 

 
    

 

  
 

{ }
H

H
c

E
λ λ λ

λ

1 1 1

1

 
 = =
  

λ
λ λ

λ λ λ

c
C λλ

c C
 (17) 

is the covariance matrix of the frequency-domain channel, re-
lated to the covariance matrix { }HE=hhC hh  of the time-
domain channel by   

 

HN=λ λ hhC FC F . After forming the con-
ditional random variable 

   1 1 1|t z λ= , from (10) we obtain 

 
        1 1 1 1 1

2

N

n n n
n

t m s m k s nλ
=

= + +∑ , (18) 
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where the conditional random variable 
  1|n nk λ λ=  is Gaussian 

with mean value obtained by (15) as { }n nE kη = =  
     

1
1 1[ ]ncλ λ λλ

1 1 1

−
−λc . Consequently, by splitting 

 n n nk η κ= + , (18) 
becomes 
 

        1 1 1 1 1 1 1 1t m s nλ α λ β= + + + , (19) 

       
     

1
1 1

2

[ ]
N

n n n
n

c m sλ λ λα
1 1 1

−
−

=

= ∑ λc ,          
    1

2

N

n n n
n

m sβ κ
=

= ∑ . (20) 

From (19)-(20), it is evident that the ICI consists of two 
parts. The first part, 

  1 1α λ , is proportional to the channel ampli-
tude 

 1λ  of the useful signal. Hence 
  1 1α λ  represents the ICI 

part that fades simultaneously with the useful signal. Its power 
can be expressed by  

 

2 2
1 ICI,| | αλ σ , where 

   

 

    

2 1 2 2
ICI, 1

2

[ ]| | | |
N

n n
n

c mα λ λ λσ
1 1 1

−
−

=

= ∑ λc . (21) 

On the other hand, the second part 
 1β  has a power that is in-

dependent of 
 1λ , as expressed by 

  

 
 

2 2
ICI, 1, 1|

2

| | [ ]
N

n n n
n

mβ λσ
1 − −

=

= ∑ λC . (22) 

Since 
  1 1α λ  and 

 1β  are uncorrelated, the signal-to-interference 
plus noise ratio (SINR) conditioned on 

 1λ  can be expressed as 

 
     

  

 

 

2 2
1 1

2 2 2 2
1 ICI, ICI, AWGN

| | | |
| |

m

α β

λγ
λ σ σ σ

=
+ +

, (23) 

where  

 

2 2
AWGN 1{| | }E nσ = . 

As far as the statistical characterization of the ICI is con-
cerned, we observe that 

 1α  in (20), apart for the scalar 
  

1cλ λ1 1

− , is 
obtained by the sum of the independent data symbols 2{ }N

n ns = , 
each one weighted by the coefficient 

 
 

1[ ]n nm λ1 −λc . As a conse-
quence, since practical OFDM systems have a high number N  
of subcarriers [1], the central limit theorem allows to approxi-
mate 

 1α  as a Gaussian variable with zero mean and variance 
2
ICI,ασ  expressed by (21). Likewise, 

 1β  in (20) is a linear com-
bination of the random variables 2{ }N

n n nsκ = . Since the coeffi-
cients 2{ }N

n nκ =  are jointly Gaussian, the pdf of n nsκ  is a 
weighted sum of Gaussian functions. Therefore, for quaternary 
phase-shift keying (QPSK), i.e., 4-QAM, the pdf of 

 1β  is 
Gaussian, while, for higher-order QAM, it is approximately 
Gaussian by the central limit theorem. In all cases, the mean of 

 1β  is zero, and its variance is expressed by (22). We underline 
that the Gaussian approximation of the CFO-induced ICI has 
been already exploited for AWGN channels [7]. In Section IV, 
we will check its accuracy in multipath scenarios. 

As a consequence of the Gaussian approximation, for QAM 
modulations with Gray coding, it is straightforward to obtain 
the conditional BER 

 BE 1(P λ )  as a function of the conditional 
SINR. For example, the conditional BER for QPSK is ex-
pressed by  

 

1/ 2
BE 1( ( )P Qλ γ) = , while for 16-QAM it can be 

expressed by [11] 

 ( ) BE 1
3 1 1 9 1( 5
4 5 2 5 4

P Q Q Qλ γ γ γ
   

) = + −         
. (24) 

In this case the BER, obtained by inserting (23)-(24) in (13), is 
the sum of three integrals. In the general M-QAM case, the 
number of such integrals is equal to 1M −  [11]. 

By (23)-(24), it is evident that 
 BE 1(P λ )  depends only on 

 1| |λ , and therefore the integration variable can be real. More-

over, since 
 1| |λ  has a Rayleigh pdf, each integral can be re-

placed by a series expansion of 2 0F -type generalized hyper-
geometric functions [12]. For QPSK, the final results is 

2 2
2

2 0
0

1 2 3 1BER , ;;
2 4 2 2!2

k

k k
k

e F k
k

µ
νµ µ ν

ν
2

+∞−
2

2
=

 = − + −  
∑ , (25) 

 
 

 
  

2
12

2 2
ICI, AWGN

| |c mλ λ

β

µ
σ σ

1 1=
+

,      

2
ICI,2

2 2
ICI, AWGN

cλ λ α

β

σ
ν

σ σ
1 1=
+

. (26) 

A simple and accurate criterion for truncating the summation in 
(25) can be found in [12]. 

B. BER Evaluation in Rician Fading Channels 
In Rician fading channels, we assume that a single line-of-

sight (LOS) is present, i.e., that [0]h  in (2) is characterized by 
a non-zero mean value, and we use the same approach adopted 
in the Rayleigh case. From [10], the conditional pdf 

 
 1 1Λ| ( |f λ λ )λ  is an ( 1N − )-dimensional Gaussian with covari-

ance again expressed by (16), and mean value expressed by 
 

       

1
LOS 1 1,NLOS| N cλ λλ λλ λ

1 11 1

−
−= +λ λη 1 c , (27) 

where 
  LOS 1{ }Eλ λ= , 

   1,NLOS 1 LOSλ λ λ= − , and 1N −1  is the 
( 1N − )-dimensional all-one vector. By setting 

   1 1 1|t z λ= , 
from (10) we obtain an expression equivalent to (18), where 
the conditional random variable 

  1|n nk λ λ=  is Gaussian with 
mean value 

      

1
LOS 1,NLOS 1[ ]n ncλ λ λη λ λ

1 1 1

−
−= + λc . In this case, 

 1t  
can be expressed as 
    

            1 1 LOS 1 1 1,NLOS 1 1 1,NLOS 1 1 1t m s m s nλ λ α λ χ β= + + + + + , (28) 

where 
 1α  and 

 1β  are defined in (20), and 

 
 1  LOS

2

N

n n
n

m sχ λ
=

= ∑ . (29) 

By exploiting the Gaussian approximation, for Gray-mapped 
QAM, the conditional BER 

 BE 1(P λ )  is expressed as the sum of 
Q-type functions like the one in (24), with SINR given by 

  
     

  

 

 

2 2
1 1

2 2 2 2 2
1,NLOS ICI, ICI, , ICI, ICI, AWGN

| | | |
| | 2

m

α α χ χ β

λγ
λ σ ρ σ σ σ

=
+ + + +

, (30) 

   

 
  

2 2 2
ICI, LOS

2

| | | |
N

n
n

mχσ λ
=

= ∑ , (31) 

  

       

2 1
ICI, , 1,NLOS LOS 1

2

| | Re[ [ ] ]
N

n n
n

m cα χ λ λ λρ λ λ
1 1 1

∗ −
−

=

= ∑ λc . (32) 

The final BER is then obtained by numerical integration of the 
integral expressed by (13). 

C. BER Evaluation in the Presence of Guard Bands 
So far, we have assumed that all the N  subcarriers are ac-

tive, although any practical OFDM system contains some vir-
tual (or null) subcarriers used as guard frequency bands [1]. 
However, it is easy to extend the BER analysis in order to take 
into account the presence of V  virtual subcarriers, because a 
virtual subcarrier does not contribute to the ICI. As an exam-
ple, assume that the null subcarriers are the ones with 

{ 1, 2,..., }n N V N V N∈ − + − + . The only modification to the 
previous analysis is that 

 
0ns =  for these subcarriers. There-

fore, the BER analysis remains still valid, provided that (21), 
(22), (31), and (32) are truncated up to n N V= − . Obviously, 
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in this case the BER is not the same for all the active subcarri-
ers, because, when the subcarriers are close to the guard bands, 
the ICI power is smaller. 

IV. SIMULATION RESULTS 
In this section, we present some simulation results in order 

to validate the Gaussian approximation applied in the theoreti-
cal analysis. We consider an OFDM system with cyclic prefix 
of length 16L = , and 64N =  subcarriers, spaced with one an-
other by 1/ 312.5f T∆ = =  kHz. We use the channel models B 
and D of the IEEE 802.11a wireless local area network 
(WLAN) standard [13]. In the models B and D, each tap suf-
fers independent Rayleigh and Rician fading, respectively, with 
an exponentially decaying power delay profile, and an rms de-
lay spread equal to 100 ns and 140 ns, respectively. 

Fig. 1 shows the BER performance of QPSK as a function 
of 

  

2
0 AWGN 2/ /( log )bE N c Mλ λ σ

1 1
=  in the Rayleigh channel B. 

It is evident that the theoretical analysis exactly predicts the 
simulated BER for different values of the normalized CFO ε . 
Such a good agreement clearly indicates that, differently from 
the AWGN case [7], in frequency-selective scenarios the Gaus-
sian approximation of the ICI leads to accurate results. The mo-
tivation of this accuracy is explained in the following. When 
approximating the sum of many variables by a single Gaussian 
variable, the approximation gets worse at the tail of the Gaus-
sian, and consequently the approximated BER is not suffi-
ciently accurate when the true BER is small. The mismatch be-
tween the approximated and the exact BER happens not only in 
AWGN channels, but also for the conditional BER 

 BE 1(P λ )  in 
our scenario. However, in fading channels, the BER is obtained 
by averaging 

 BE 1(P λ )  over the pdf of 
 1λ , and hence it is prac-

tically imposed by the values of 
 BE 1(P λ )  that correspond to 

small values of 
 1| |λ  [14]. For these values, the Gaussian ap-

proximation is very good, because 
 BE 1(P λ )  is high, and there-

fore the obtained BER exactly matches with the true BER. This 
behavior is confirmed by the results of Figs. 2-3, which show 
the BER for 16-QAM, and the BER of QPSK as a function of 
the normalized CFO ε , respectively. Figs. 1-2 report also the 
BER performance obtained using the ICI approximation pro-
posed in [15], which mainly deals with the effect of the channel 
estimation errors. Although [15] approximates all the ICI as a 
zero-mean Gaussian random variable with power independent 
of the fading gain, (19) shows that part of the ICI is propor-
tional to the fading gain 

 1λ . Therefore, when 
 1| |λ  is low 

(high), the ICI power is smaller (larger) than the one assumed 
in [15]. Since most of the errors occur when 

 1| |λ  is low, it 
turns out that in [15] the degradation due to the ICI is overes-
timated, as confirmed by the BER floors in Figs. 1-2. 

Fig. 4 exhibits the BER of the best subcarrier when only 
A 52N N V= − =  out of 64N =  subcarriers are active [13], 

using QPSK and channel B. Although the ICI is generated by a 
smaller number of subcarriers, the Gaussian approximation is 
very accurate in this context too. Figs. 5-6 illustrate the BER 
performance in channel D with Rician factor 10K = , for 
QPSK and 16-QAM, respectively. In such a scenario, for high 
values of 0/bE N , the theoretical BER, obtained by Monte 
Carlo integration techniques, is less accurate. The reason of this 
inaccuracy is the high Rician factor K , which produces a high 
value of 

 LOSλ . Consequently, the term 
 1χ  in (29) is the domi-

nant one among the ICI terms. Since 
 1χ  is similar to the ICI 

term in AWGN channels, we expect that the theoretical BER 
overestimates the true BER, as in AWGN [7]. Anyway, as 
shown in Figs. 5-6, this mismatch is very small. 

Finally, we want to point out that the Gaussian approxima-
tion can be successfully applied not only in WLAN scenarios, 
but also in broadcasting environments, where thousands of ac-
tive subcarriers are usually employed [1]. 

V. CONCLUSIONS 
We have proposed a theoretical approach that allows to 

predict the BER of OFDM systems impaired by CFO in multi-
path Rayleigh (or Rician) fading channels. Simulation results 
in WLAN scenarios have shown that the proposed approach is 
characterized by a good level of accuracy. Further studies 
could also consider the presence of nonlinear distortions [16], 
channel estimation errors [15], and channel coding. 
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Figure 1.  BER of QPSK in the Rayleigh channel B. 
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Figure 2.  BER of 16-QAM in the Rayleigh channel B. 
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Figure 3.  BER of QPSK in the Rayleigh channel B. 
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Figure 4.  BER of QPSK in the presence of guard bands. 
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Figure 5.  BER of QPSK in the Rician channel D. 
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Figure 6.  BER of 16-QAM in the Rician channel D. 
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