
 

 

MMSE-Based Local ML Detection of             
Linearly Precoded OFDM Signals 

 

L. Rugini, P.Banelli 
Dept. of Elect. and Inform. Eng. (D.I.E.I.) 

University of Perugia 
Perugia, Italy 

{rugini, banelli}@diei.unipg.it 

G. B. Giannakis 
Dept. of ECE 

University of Minnesota 
Minneapolis, MN 

georgios@ece.umn.edu
 
 

Abstract—Linear precoding is a well known effective technique to 
boost the performance of orthogonal frequency-division multi-
plexing (OFDM) systems. A drawback of linearly precoded 
OFDM (LP-OFDM) systems is the high computational complex-
ity required by maximum-likelihood (ML) detection, which is 
mandatory to capture all the channel diversity. Conversely, low-
complexity techniques, such as the linear minimum mean-
squared error (MMSE) detection, suffer from non-negligible per-
formance loss with respect to the ML performance. In this paper, 
we propose a detection technique that performs a local ML 
(LML) search in the neighborhood of the output provided by the 
MMSE detector. The trade-off between performance and com-
plexity of the proposed LML-MMSE detector, which fall between 
the ones of the MMSE and ML detectors, can be nicely adjusted 
by appropriately setting the neighborhood size. Simulation re-
sults show that the LML-MMSE detector with minimum 
neighborhood size outperforms a block decision-feedback equali-
zation (DFE) approach, while preserving a similar complexity. 

Keywords-OFDM; linear precoding; MMSE; local maximum-
likelihood 

I. INTRODUCTION 
Orthogonal frequency-division multiplexing (OFDM) is a 

widely employed technique for wireless communications over 
multipath Rayleigh fading channels [1]. OFDM systems gener-
ally adopt a cyclic prefix to transform the frequency-selective 
fading channel into a set of parallel frequency-flat channels, 
which facilitates the decoding and the equalization steps. How-
ever, the simplified (scalar) equalization step is coupled with a 
loss of multipath diversity, leading to poor bit-error rate (BER) 
performance. The multipath diversity is usually recovered by 
using forward-error correction (FEC) coding [1], at the expense 
of some data rate reduction. 

A different approach, which can also be combined with 
standard FEC coding, consists of exploiting the multipath di-
versity by means of a linear precoder. In a linearly precoded 
OFDM (LP-OFDM) system, multipath diversity is introduced 
by transmitting different linear combinations of uncoded sym-
bols over different subcarriers [2]. Consequently, differently 
from an uncoded OFDM system, the presence of a deep fade in 
the frequency domain does not annihilate any transmitted sym-

bol, but only affects the linear combination transmitted in the 
faded subcarrier. Therefore, by exploiting the finite-alphabet 
property of the constellation, the transmitted symbols can still 
be recovered from the data received on the other subcarriers, 
giving rise to improved BER performance with respect to a 
non-precoded system. If a non-redundant precoder is chosen 
[3], the performance gain is obtained without sacrificing the 
data rate, as firstly proposed by [4] for single-carrier flat-fading 
links. 

In order to recover the LP-OFDM data, various detection 
techniques can be applied. Each of these techniques presents 
different complexity versus BER tradeoffs. The maximum-
likelihood (ML) detector is able to get both the diversity and 
coding gain furnished by frequency-selective Rayleigh fading 
channels, thus providing good BER performance. However, its 
computational complexity is exponential in the precoder size. 
On the contrary, linear detectors and decision-directed 
schemes, such as the minimum mean-squared error (MMSE) 
detector and the decision-feedback equalization (DFE), exhibit 
lower complexity, but suffer from BER performance loss with 
respect to the ML detector. 

To reduce the performance gap between linear and ML de-
tectors, various advanced techniques could be employed, such 
as sphere decoding (SD) [5], semidefinite programming (SDP) 
[6], and probabilistic data association (PDA) [7]. These tech-
niques approach the ML performance, with a complexity that, 
although much smaller than for ML, is higher than for linear 
and decision-directed detectors. 

In this paper, we introduce the local ML (LML) detection 
[8]-[10] for LP-OFDM. The corresponding detector performs a 
complexity-constrained ML search in the neighborhood of an 
initial estimate. We show that the output of the MMSE detector 
is a convenient choice for such an initial estimate. By adjusting 
the neighborhood size, the proposed LML-MMSE detector can 
nicely trade performance for complexity, filling the gap be-
tween the MMSE and the ML detectors. Simulation results in 
typical wireless local area network (WLAN) channels show 
that the proposed LML-MMSE detectors outperform a DFE 
approach, while maintaining under control the increase of 
complexity. 

II. LP-OFDM SYSTEM MODEL 
An OFDM system with N  subcarriers and a cyclic prefix 

of length L  is considered. Throughout the paper, we assume 
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that the multipath channel is time-invariant, with each path 
characterized by a Rayleigh statistic, and that the maximum 
delay spread does not exceed the cyclic prefix duration. We 
also assume time and frequency synchronization at the receiver 
end. As a consequence, the lth received block, after the cyclic 
prefix removal and the fast Fourier transform (FFT), can be ex-
pressed as [11] 

     [ ] [ ] [ ]l l l= +y D c w , (1) 

where  [ ]ly  is a column vector of dimension N , 
   0 1 1diag( [ , ,...., ,0,....,0] )T

N LN h h h −=D F  is the N N×  di-
agonal matrix that contains the channel coefficients on the FFT 
grid, 

 ih  is the ith channel tap in the time domain, NF  is the 
unitary N N×  FFT matrix,  [ ]lc  is the 1N ×  vector that repre-
sents the transmitted codeword, and  [ ]lw  stands for the addi-
tive white Gaussian noise (AWGN) in the frequency domain. 
In a LP-OFDM system, the transmitted codeword  [ ]lc  is ob-
tained by linear combination of different uncoded symbols, as 
expressed by    [ ] [ ]l l=c Φ s , where, focusing on non-redundant 
precoding, Φ  is the N N×  precoder matrix, and  [ ]ls  is the 

1N ×  vector that contains the data symbols (drawn from a ge-
neric constellation of size M ), which are assumed to be inde-
pendent and identically distributed with unit power. 

In order to reduce the system complexity, subcarrier group-
ing has been proposed in [3], where the subcarriers are grouped 
in subsets, and the precoding philosophy is applied within each 
subcarrier subset. It turns out that the subcarrier grouping with 
maximally-separated subcarriers in each subset is the optimum 
one in order to preserve the maximum diversity gain, which is 
equal to the minimum value between the precoder size and the 
number of channel taps. By assuming N BK= , where B  is 
the number of subcarrier subsets, and K  is the precoder size, 
by properly selecting the rows of the vector  [ ]ly , expression 
(1) can be split in B  equivalent equations 

  [ ] [ ] [ ]b b b bl l l= +y D c w ,              1,...,b B=  (2) 
where [ ]b ly  is the 1K ×  received vector relative to the bth 
subset, bD  is the K K×  diagonal matrix containing the sub-
carrier gains of the bth subset, and  [ ] [ ]b bl l=c Θs  represents 
the codeword transmitted on the bth subcarrier subset. The pre-
coder Θ , which is the same for all the subsets, can be either 
unitary or non-unitary [3]. Since the decoding techniques con-
sidered in this paper do not depend on the subset index b  and 
on the block index l , in order to simplify the notation, we re-
write (2) as  

     = + = + = +y Dc w DΘs w Hs w , (3) 
where  =H DΘ  represents the aggregate effect of the channel 
and of the precoder on the uncoded symbol vector s . 

III. OVERVIEW OF DECODING TECHNIQUES 
In order to exploit all the performance advantages of linear 

precoding (i.e., collecting the diversity and coding gains of-
fered by the channel), ML detection should be performed at the 
receiver side. In this case, due to the AWGN nature of w , the 
decision rule can be formulated as 

 MLˆ arg max{ ( )}
S∈

= Λ
s

s s , (4) 

where 
  ( ) 2 Re( )H H H HΛ = −s s H y s H Hs  (5) 
is the log-likelihood function (LLF), and S  is the set of all 
possible transmitted symbol vectors, with cardinality equal to 

KM . However, due to the high computational complexity in-
volved in the evaluation of KM  LLFs, some suboptimum de-
tection schemes have been suggested by the analogy between 
(3) and the input-output relation of equalization problems in 
single-carrier systems. Consequently, simpler linear detection 
techniques can be applied at the receiver to obtain a soft esti-
mate of the transmitted symbol vector, as expressed by 

 =s G y . By employing the zero-forcing (ZF) or the MMSE 
criterion, the receiver matrix G  can be expressed by 

†
ZF =G H , and 

  

2 1
MMSE ( )H H

w Kσ −= +G H HH I , (6) 
respectively, where the superscript †  denotes Moore-Penrose 
pseudoinverse, and 2

wσ  is the variance of the elements of the 
AWGN vector w . 

The main drawback of linear decoding techniques is that 
they are unable to harness the maximum possible diversity and 
coding gains, giving rise to significant loss in BER perform-
ance with respect to the ML approach [3]. Therefore, in order 
to improve the BER performance of linear detectors, while 
maintaining the decoding complexity at a reasonable level, we 
can rely on decision-directed detectors. One possibility is to 
cancel the previously-detected symbols by the block DFE ap-
proach of [12][13], which is designed to minimize the mean-
squared error (MSE) before the decision device. A different 
technique, alternative to the serial cancellation provided by the 
DFE, is the parallel interference cancellation (PIC) approach 
exploited in [14] for multiuser detection of direct-sequence 
code-division multiple-access (DS-CDMA) signals. In this case 
the other 1K −  symbols, estimated using the MMSE detector, 
are considered as interference terms, and their effect is sub-
tracted in a parallel fashion. 

Although more powerful than linear detectors, also deci-
sion-directed techniques experience non-negligible BER loss 
with respect to the ML detector. As a consequence, advanced 
techniques such as SD [5], SDP [6], and PDA [7], have been 
proposed in order to approach the ML performance with a sig-
nificantly reduced complexity. However, such a complexity is 
still high if compared with linear and decision-directed detec-
tors. Another negative aspect of certain techniques, such as the 
SD, is that the worst-case complexity for a particular received 
block can be much higher than the average complexity [15]. In 
order to overcome these drawbacks, we consider the LML 
technique, which is characterized by a fixed complexity, and 
enables performance-complexity tradeoffs between the MMSE 
and the ML detectors. 

IV. LOCAL ML DETECTION FOR LP-OFDM SYSTEMS 

A. LML Basics 
The key idea of LML detection is that we can perform the 

ML search by exploring only a subset of S , thus reducing the 
computational complexity with respect to the full-search detec-
tor. Indeed, if a first estimate ŝ  of the transmitted symbol vec-
tor s  is available at the receiver, and if such an estimate is 
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fairly accurate, we have a high probability to refine our esti-
mate by restricting the ML search only to those vectors that are 
close (in some sense) to ŝ . Such an idea is not new in tele-
communication systems, and has already been exploited for 
multiuser detection in DS-CDMA (see, e.g., [8]-[10]). How-
ever, as it will be clarified later, the considered LP-OFDM con-
text leads to design choices that are different from those of DS-
CDMA systems. 

Given a symbol vector ŝ  and an integer P  selected from 
{0,..., }K , we define the neighborhood of ŝ  of size P  as the 
set 
  ˆ ˆ( ) { | ( , ) }P HS S d P= ∈ ≤s s s s , (7) 
where  ˆ( , )Hd s s  denotes the Hamming distance between s  and 
ŝ , i.e., the number of entries of s  that are different from the 
entries of ŝ . We define the LML detector of size P  associated 
with ŝ  as 
 LML

ˆ( )
ˆ ( ) arg max{ ( )}

PS
P

∈
= Λ

s s
s s , (8) 

that is, the ML detector constrained to the restricted set ˆ( )PS s . 
In other words, the LML detector evaluates all the LLFs asso-
ciated with the vectors that differ at most P  entries from the 
first estimate ŝ , selecting the symbol vector LMLŝ  that pro-
duces the highest likelihood among them. 

Although in (7) other distance measures could be em-
ployed, e.g., the Euclidean distance, the Hamming distance al-
lows us to predict exactly the cardinality of ˆ( )PS s , given by 

 
0

( 1)
P

i
P

i

K
C M

i=

 
= −  

 
∑ , (9) 

which turns out to be independent of ŝ . Therefore, the number 
of LLFs to be evaluated in (8) can be easily controlled by a 
convenient choice of the neighborhood size P . Equation (9) 
suggests that the LML computational complexity is polynomial 
in ( 1)M K− , of order equal to the neighborhood size P , as it 
will be detailed in Subsection IV-C. 

One of the most interesting properties of the LML detectors 
is the following. 

Property 1: For any fixed initial estimate ŝ , it holds true 
that 
 LML LMLˆ ˆPr{ ( ) } Pr{ ( ) }P i≠ ≤ ≠s s s s ,        i P∀ < , (10) 
that is, the block-error probability for the LML detector of size 
P  is not higher than the block-error probabilities of all the 
LML detectors of smaller size. 

Proof: Since 1ˆ ˆ( ) ( )P PS S −⊃s s , it holds true that 
LML LMLˆ ˆ( ( )) ( ( 1))P PΛ ≥ Λ −s s , and hence 

 LML LMLˆ ˆPr{ ( ) } Pr{ ( 1) }P P= ≥ − =s s s s , (11) 
which easily leads to (10). 

In particular, for 0i = , Property 1 states that applying an 
LML search to the output ŝ  of any suboptimal detector does 
not produce a block-error probability increase. Therefore, in 
most cases, also the BER will be reduced, thus motivating the 
LML approach. 

It should be pointed out that using the output of an LML 
detector as the initial estimate for another LML is quite com-
mon to many LML approaches for DS-CDMA [8]-[10]. In-
deed, in DS-CDMA the number of users, which plays the role 

of the precoder size K  in LP-OFDM, can be very high, and 
therefore the neighborhood size is forced to a value 1P =  to 
limit the complexity. As a consequence, instead of increasing 
P , LML detectors for DS-CDMA try to improve the BER per-
formance by iterating the LML detection with 1P = . On the 
contrary, in OFDM for WLAN applications, the precoder size 
may be very small, because the maximum diversity gain can be 
achieved with a precoder of size K L=  ( 16L =  in WLAN 
scenarios [16]). Therefore, if the constellation size is not very 
high, LML detectors with 2P =  are not very complex. 

B. LML-MMSE Detector 
In the maximizations of non-convex functions, the initiali-

zation point is often a crucial step, because an unlucky starting 
point can lead to a local maximum that is located very far from 
the global one. As a consequence, for an LML technique of 
size P , we would like an initial estimate with at most P  er-
rors. However, such a condition is quite hard to guarantee even 
when using the ML detector. Therefore, as an alternative crite-
rion, we could ask for a detector whose soft output vector con-
tains at least K P−  entries that are close to the transmitted 
ones. This way we can force the LML detector to confine its 
search to those vectors that differ from the estimated one only 
on the remaining P  entries. If we select the MSE as the meas-
ure of closeness, and we restrict the choice among the linear 
detectors for complexity reasons, the detector we are looking 
for is, of course, the MMSE decoder. Indeed, the MMSE detec-
tor minimizes the MSE of each symbol in the data vector s , 
independently of the others. 

Instead of the MMSE detector, [8] adopts the ZF detector as 
a first stage. However, in LP-OFDM systems, this detector per-
forms poorly in the presence of deep fades. Alternatively, [10] 
suggests to use a DFE approach. Although the BER for DFE is 
typically smaller than for MMSE detection, the DFE suffers 
from error propagation, a phenomenon that tends to concentrate 
the errors in few blocks. For this reason, the LML techniques 
seem to be less effective when decision-directed approaches are 
used as starting schemes. This fact will be confirmed by simu-
lations. 

C. Computational Complexity Reduction 
For a constellation size 2M > , the number PC  of LLFs to 

be evaluated may be too high even when moderate values of 
the neighborhood size P  and of the precoder size K  are em-
ployed. A possibility is to exclude from the search those vec-
tors whose entries are not adjacent to those of ŝ . We define the 
constellation neighborhood of ŝ  of size P  and distance D  as 

   , ˆ ˆ ˆ( ) { ( ) | ( , )   1,..., }P D P E i iS S d s s D i K= ∈ ≤ ∀ =s s s , (12) 

where   ˆ( , )E i id s s  represents the Euclidean distance between the 
ith entry is  of s  and the ith entry îs  of ŝ . We can then define 
the reduced constellation (RC) LML detector of size P  and 
distance D  associated with ŝ  as 

 
,

RC-LML
ˆ( )

ˆ ( ) arg max{ ( )}
P DS

P
∈

= Λ
s s

s s . (13) 

As an example, for quaternary phase-shift keying (QPSK), the 
choice 2D =  excludes from the constellation neighborhood 
all the vectors with ˆi is s= − , thus reducing the effective size of 
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the constellation from 4M =  to 3m = . As far as performance 
is concerned, assuming the MMSE as first stage, the reduced 
constellation approach excludes those vectors with components 
characterized by the highest MSEs. Such symbols should be 
less likely to be correct, and therefore the RC-LML-MMSE 
detector should present a small performance loss with respect 
to the LML-MMSE detector. 

A second possibility to reduce the complexity is to exploit 
the particular structure of some precoders designed for LP-
OFDM. In this case, rather than reducing the number of vectors 
in the neighborhood set, we simplify the computation of the 
LLF. For instance, we may assume that the precoder matrix Θ  
is chosen to be unitary, and that all its entries 

 ,[ ] i jΘ  have 
modulus equal to 1/ K . This class of precoders includes 
those designed for linear MMSE detection [17], and those de-
signed for ML detection [3][4], which are expressed by 

 1diag(1, ,..., )K
K α α −=Θ F , (14) 

where K  is a power of two and α  satisfies the equation 
1Kα = − . In this case, the computational complexity of the 

LML detector with 1P =  can be significantly reduced. This 
fact is explained in the following for BPSK. Letting ˆ i+s e  de-
note the vector obtained by flipping the ith entry of ŝ , where 

ˆ[0,...,0, 2 ,0,...,0]T
i is= −e , it holds true that 

    ˆ ˆ ˆ( ) ( ) 2Re( )T H T H T H
i i i i iΛ + = Λ + − −s e s e H y e H Hs e H He . (15) 

Since ie  is non-zero only in the ith position, T H
i ie H He  turns 

out to be equal to  
 ,4[ ]H
i iH H . However, since  =H DΘ  and 

 
 ,[ ] 1/i j K=Θ , 

 ,[ ]H
i iH H  does not depends on i, and 

4 tr( ) /T H H
i i K=e H He D D . Hence, in order to find the most 

likely among the vectors  ˆ{ ,  1,..., }i i K+ =s e , it is sufficient to 
look for the maximum value assumed by  ˆ2 Re( ( ))T H

i −e H y Hs , 
for 1,...,i K= . By defining the K K×  diagonal matrix 

1 2ˆ2diag( ) [ , ,..., ]T
K= − =E s e e e , the LML detector has only to 

find the maximum value of the vector  

  ˆ2 Re( ( ))H= −v E H y Hs , (16) 
and successively, if max( ) 4 tr( ) /H K>v D D , it has to flip the 
symbol of ŝ  corresponding to the position of max( )v . As a 
consequence of (16), the complexity of such an LML detector 
is comparable with that of decision-directed detectors. For 
other constellations, similar considerations hold true with mi-
nor modifications. 

Before elaborating further on the computational complexity 
of the LML-MMSE detector, we first highlight that a unitary 
precoder also simplifies the MMSE detector computation, be-
cause the matrix to be inverted in (6) is diagonal. Moreover, we 
also point out that the LML detector can equivalently maximize 
the relative LLF ˆ ˆ( ) ( )Λ + − Λs e s , which is easier to be evalu-
ated than ˆ( )Λ +s e , where, for a generic constellation, e  repre-
sents an error vector containing at most P  non-zero values. 
Therefore, by plugging e  in (15), and exploiting both 

 =H DΘ  and (14), it can be shown that the number of complex 
multiplications required for each received block y  can be 
smartly reduced to 

  2
2

0

4 log 8 ( )( 1)
P

i
mult

i

K
N K K K i i m

i=

 
= + + + −  

 
∑ , (17) 

which is equal to 2
23 4 log 7multN K K K K= + +  when 2P =  

and BPSK ( 2)m =  is used. Moreover, 2log 3 1K K K+ −  addi-
tional complex multiplications are required at the beginning to 
compute HH H , which has to be updated only when the chan-
nel changes. From (17), by focusing on the BPSK case and as-
suming / 2P K≤ , the computational complexity increases as 

( )PO K . Thus, for 2P = , the complexity of the LML-MMSE 
detector is below the average complexity of SD, which is 
roughly 3( )O K  [15], and below the complexities of PDA and 
SDP, which are 3( )O K  [7], and 3.5( )O K  [6], respectively. 
This fact motivates the usefulness of the proposed algorithm 
with 2P ≤  for LP-OFDM systems. When 2P > , the com-
plexity of the LML-MMSE detector becomes comparable to 
those of near-ML algorithms, and hence a performance com-
parison with such techniques would be required (due to the lack 
of space, this comparison is not pursued here). 

D. Effect of a Pilot-Aided Channel Estimation Technique 
So far, we have implicitly assumed that the diagonal chan-

nel matrix D , contained into H , is known to the receiver. In 
practice, only an estimated version of D  is available, and 
therefore the LML detector should be obtained by replacing the 
exact H  with its estimate  

ˆ ˆ=H DΘ . In this subsection, our aim 
is to modify the MMSE detector of the first stage in order to 
take into account the channel estimation errors, and thereby 
improve the overall performance of the LML-MMSE detector. 

We assume that pilN  pilot subcarriers, equally spaced [18], 
are transmitted in the first OFDM block. Since we have as-
sumed that the channel can have at most L  taps, we choose 

pilN L= . At the receiver, we assume ML channel estimation 
(MLE), which achieves the Cramér-Rao lower bound (CRLB) 
[19]. In this case, the covariance matrix of the frequency-
domain channel estimation error ˆdiag( )= −ε D D  can be ex-
pressed by     

2 1{ }H H
w pilE N Nσ −=ε ε FF , where F  is the pilN N×  

matrix obtained by selecting the first pilN  columns of NF . It 
turns out that if 2{ / 2 ,  ,  log }n

pil pilK N n n N∈ ∈ < , the co-
variance matrix of the channel estimation error in each pre-
coded block is   

2{ }H
w KE σ=εε I . This implies that the channel 

estimation error can be interpreted as an additive white Gaus-
sian error with the same power of the thermal AWGN repre-
sented by w . In such a situation, we can define the modified 
MMSE (MMMSE) detector as in (6), where H  and 2

wσ  are 
simply replaced by Ĥ  and 22 wσ , respectively. By similar con-
siderations, we can also define the modified DFE (MDFE), and 
the modified PIC (MPIC), to be used when the channel is esti-
mated by the aid of pilot tones. 

V. SIMULATION RESULTS 
In this section, we present simulation results in order to as-

sess the BER performance of the LML-MMSE detectors. We 
consider an OFDM system with cyclic prefix of length 16L = , 
and 64N =  subcarriers, spaced with one another by 312.5 
kHz. The chosen precoder is the one in (14). We use the chan-
nel model C of the IEEE 802.11a standard [16]. In this model, 
each tap suffers independent Rayleigh fading, with an exponen-
tially decaying power delay profile and an rms delay spread 
equal to 150 ns. 

Figs. 1-2 show the BER performance of various detectors 
versus 0/bE N , averaged over 400 channel realizations, when 
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BPSK and a precoder size 8K =  are used. Fig. 1 shows that at 
3BER 10−= , the performance gain of the LML-MMSE detec-

tor with 1P =  with respect to DFE and MMSE detector is 
roughly 1.4 dB and 2.8 dB, respectively, while the loss with 
respect to the ML detector is approximately 1.2 dB. Fig. 1 also 
indicates that 1 iteration of the LML search gives small per-
formance improvement (0.3 dB when 3BER 10−= ) with re-
spect to the non-iterative LML-MMSE detector, at the expense 
of doubling the complexity. More iterations are not effective. 
Fig. 2 shows that the performance obtained by the LML-
MMSE detector with 1P >  is very close to those of ML detec-
tion. Although Fig. 1 suggests that the decision-directed detec-
tors outperform the MMSE detector, Fig. 2 indicates that their 
LML counterparts behave differently. Indeed, when 1P = , the 
LML-MMSE detector outperforms both the LML detector with 
DFE initialization (LML-DFE) and with PIC initialization 
(LML-PIC), with a gain of roughly 1 dB when 4BER 10−= . 
This fact is clearly explained by Fig. 3, which plots versus k  
the number of detected blocks with k  errors, when 62.88 10⋅  
blocks are transmitted at 0/ 10bE N =  dB. Due to error propa-
gation, the DFE produces a significant number of blocks with 
more than one symbol error, which are not recovered by a sub-
sequent LML approach. On the contrary, most of the erroneous 
blocks of the MMSE detector contains only one error, and 
therefore in this case the LML approach with 1P =  is quite 
effective. 

Fig. 4 shows the BER performance, when QPSK with Gray 
coding and 16K =  are used. In this case, the performance 
gains of the LML-MMSE detectors are smaller than in the pre-
vious case. This is due to the fact that for QPSK the cardinality 
of S  is higher than for BPSK. This means that in the QPSK 
case the LML search is performed in a smaller subset of the 
total set S , thus neglecting more possible solutions than for 
BPSK. However, also in this case the LML-MMSE detector 
with 1P =  outperforms the DFE detector. Moreover, the RC-
LML-MMSE detectors with 2D =  achieve the same per-
formance of their LML-MMSE counterparts, despite the 
smaller complexity (roughly half when 2P = ). 

Fig. 5 compares the BER performance of MMSE, DFE, and 
PIC, with the ones of their modified counterparts, in the pres-
ence of channel estimation errors. BPSK, 16pilN = , and 

8K =  are used. When 4BER 10−= , the MMMSE provides 1.2 
dB gain with respect to the MMSE. Fig. 6 depicts the BER of 
the LML-MMSE detector in the same simulation scenario of 
Fig. 5. It can be observed that the LML-MMSE approach 
seems to be effective also in the presence of channel estimation 
errors. 

VI. CONCLUSIONS 
In this paper, we have considered the LML detection ap-

proach in LP-OFDM systems. We have shown that the output 
of the MMSE detector is a convenient initialization for the 
LML detector. The performance and complexity of the pro-
posed LML-MMSE detector, which fall between the ones of 
the MMSE and ML detectors, can be nicely adjusted by con-
trolling the neighborhood size. Simulation results have demon-
strated that the LML-MMSE detector with minimum (non-
trivial) neighborhood size outperforms the DFE approach, 
while exhibiting comparable complexity. Performance im-

provements obtained by exploiting the soft information of the 
MMSE detector, as well as the thorough comparison with near-
ML techniques, will be the subject of future investigation. 
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Figure 1.  BER performance for BPSK. 
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Figure 2.  BER performance for BPSK. 
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Figure 3.  Distribution of the number of errors within the same data block. 
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Figure 4.  BER performance for QPSK. 
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Figure 5.  BER performance with channel estimation errors. 
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Figure 6.  BER performance with channel estimation errors. 
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