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Abstract

This paper deals with the design of coded-excitation
signal for medical ultrasound imaging. In order to design
a code sequence that generates an ultrasound signal with
good detail resolution and signal-to-noise ratio, both in
frequency-dependent and frequency-independent attenuating
media, we propose to use a linear Huffman code obtained
by an efficiency-driven optimizing procedure. By resorting
to computer simulations, we show that this approach is
particularly effective and it outperforms other linear cod-
ing schemes commonly used in coded-excitation ultrasound
imaging.

1. Introduction

Ultrasound coding excitation (CE) in medical imaging is
a transmission technique that allows to increase the transmit-
ted energy without increasing the pulse amplitude [1]–[5],
by exciting the ultrasound transducer with a long modulated
pulse characterized by a Time-Bandwidth-Product greater
than one. In the CE framework, some authors proposed
single [3] and double transmissions [4] with binary-coded
modulations, which are characterized by extremely low
complexity. For instance, complementary Golay codes [4],
thanks to the side-lobes cancellation granted by double
transmissions, provide ideal performance in frequency flat
environments, although they highly suffer the presence
of frequency-dependent attenuations [2]. On the contrary,
linear-FM codes [2] (i.e. chirp) are robust against frequency-
dependent attenuations, but suffer of a non-ideal autocorre-
lation function and, thus, of a worse contrast resolution. In
order to have a CE technique characterized by quasi-ideal
performance, both in the absence and in the presence of
frequency-dependent attenuations, we propose to code the
signal by resorting to Huffman sequences, which combine
amplitude with phase (and thus frequency) modulation.

To this end, Section 2 provides details of a typical CE
architecture, while Section 3 briefly summarizes the Huff-
man coding theory. Section 4 tests the proposed Huffman
coding approach by means of typical ultrasound performance
indexes, also employing the Field II [6] simulator, and
it makes comparisons with double-transmission Golay CE
[4] and with a single-transmission binary CE that employs
inverse filtering [3].

2. System Architecture and Ultrasound Coding
Excitation

Fig. 1 describes the TX/RX block diagram of a CE
ultrasound system that employs a phased-array probe with
Q piezoelectric elements.

Figure 1. Block diagram of a coded-excitation ultra-
sound system.

The code generator produces the discrete-time baseband
digital signal s̃[n] that is modulated to obtain the RF signal
s[n] expressed by

s[n] = <{s̃[n]ej2πf0Tsn}, (1)

where f0 is the ultrasound center frequency and Ts = 1/fs
is the sampling generation time. After digital-to-analog
conversion (DAC) and proper amplification, the signal s(t)
excites the ultrasound piezoelectric elements.
At the receiver side, in the case of a single scatterer and
ignoring noise and signal attenuation, the analog-to-digital
converter (ADC) output r[n] can be approximated by the
time- and frequency-shifted version of the transmitted signal
s[n], as expressed by

r[n] ≈ <{s̃[n− k0]e
j2π[−fd(n−k0)Ts]}, (2)

where k0 is the digital round trip delay, fd is the frequency
shift induced by the frequency-dependent attenuation [1],
and Ts is the sampling interval that, for simplicity, is



assumed equal to that one used in the generation process.
The frequency shift is typically approximated by [7]

fd = βB2
rf

2
0 z, (3)

where β is the frequency dependent attenuation coefficient,
Br is the relative bandwidth of the transmitted pulse and z
is the depth of the reflecting scatterer.
The discrete-time RF signal r[n] is successively processed
to compress (decode) the effective impulse response, and
consequently restore the spatial resolution. More precisely,
the output of the pulse compressor is obtained by cross-
correlating the received waveform r[n] with the pulse com-
pression waveform ψ[n], as expressed by

Rrψ[k] =

+∞∑

m=−∞

r[m]ψ[k +m], (4)

which is summarized by its baseband complex counterpart
R̃
r̃ψ̃

[k] expressed by

R̃
r̃ψ̃

[k] =
+∞∑

m=−∞

r̃∗[m]ψ̃[k +m], (5)

and where, by means of (1), r̃[n] and ψ̃[n] are the com-
plex envelope associated to the RF received signal r[n]
and the compression waveform ψ[n], respectively. While in
the absence of frequency-dependent attenuation the pulse
compression output is R̃r̃ψ̃[k] ≈ R̃s̃ψ̃[k + k0], when fd 6= 0

(5) becomes R̃r̃ψ̃[k] ≈ χ̃
s̃ψ̃

(k+k0, fd), where the ambiguity
function

χ̃
s̃ψ̃

(k, fd) =

+∞∑

m=−∞

s̃∗[m]ψ̃[m+ k]e−j2πfdmTs (6)

shows how the cross-correlation function changes with a
frequency variation fd.
Our aim is to design a system characterized by a ridge
[1] ambiguity function, in order to guarantee, even with a
frequency-dependent attenuation, both a good detail and a
good contrast resolution, which depend, respectively, on the
width of the main lobe and on the ratio MSR between the
main lobe and the side lobes of |R̃

r̃ψ̃
[k]|. When the com-

pression waveform ψ[n] is equal to the transmitted signal
s[n], the pulse compression is the classical matched filter
and thus we would have R̃

r̃ψ̃
[n] = R̃

r̃s̃
[n] ≈ χ̃

s̃s̃
(k+k0, fd).

Moreover, we want to compare the obtained CE performance
with those of other linear codes (L)-CEs that are generally
expressed by the baseband signal

s̃[n] =

N∑

i=0

cip[n− iM ], (7)

where p[n] is the pulse shaping waveform, ci are the codes
of length N , and M is an opportune upsampling factor.
We will compare different (L)-CE approaches with respect

to the detail and the contrast resolution, and the signal-to-
noise ratio gain GSNR, which is defined by

GSNR =
SNRc
SNR0

=
|Rrψ[0]|2

(|Rψψ[0]|σ2)
·
|Rs0s0 [0]|σ2

|Rr0s0 [0]|2
, (8)

where σ2 is the system noise power, SNRc is the signal-
to-noise ratio guaranteed by the CE technique and a pulse
compression waveform ψ[n], and SNR0 is the SNR at the
reception of r0[n] when a single pulse (without CE) s0[n] =
p[n] sin[2πf0n] is transmitted.

3. Huffman coding

The design of good linear CE sequences aims at obtaining
a coded waveform s[n] characterized by an autocorrelation
function R̃

s̃s̃
[k] that is similar to that one of a single strong

pulse, and, in the presence of frequency shifts, a ridge
ambiguity function. Thus, by means of eq. (7) our goal is to
find a sequence {ci} whose discrete autocorrelation function
is similar to a Kronecker delta (Rcc[k] =

∑N−k
i=0 cic

∗

i+k =

δ[k]) such that R̃
s̃s̃

[k] = Rpp[k], and successively to design
p[n] in order to meet our requirements.

In 1962 Huffman [8] found out a family of complex
discrete sequences {cHi} with autocorrelation functions
RcHcH

[k] expressed by

RcHcH
[k] =






∑N
i=0 |cH,i|

2, k = 0
0, 0 < k < N

−
RcHcH

[0]X−N

1 −X−2N
, k = N

, (9)

where X is a design parameter, and that, by means of (9),
are close to our desired target, except for k = N . Huffman
demonstrated that a sequence {ci} has the autocorrelation
function expressed by (9) if its Z-transform CH (z)

CH(z) = cH,0 + cH,1z
−1 + . . .+ cH,Nz

−N

= cH,0

N∏

i=1

(1 − z−1zi), (10)

has all the zeros zi that are spaced at equal angular intervals
in the z-plane and lie in one of two origin-centered circles,
with radius X and 1/X , as expressed by

zi =

{
Xej2πi/N , if the ith zero has radius X
X−1ej2πi/N , if the ith zero has radius 1/X

.

(11)
Further properties of this kind of sequences can be summa-
rized as

MSR = RcHcH
[0] = XN +X−N

η =
MSR

maxn |cH,n|2
, (12)

where the MSR is equal to the code energy, and η represents
the efficiency of the sequence, which influences the GSNR
achievable with the specific code.



Once the two parameters N and X are selected (e.g. by
choosing the maximum sequence length and the MSR in
(12)), according to (10), there are 2N different sequences
with the same autocorrelation function expressed by (9),
each one characterized by its own efficiency η and ambiguity
function χ̃

s̃s̃
(k, fd). We suggest to apply the synthesizing

method described by Ackroyd in [9] in order to choose the
Huffman sequence {cHi}. Indeed, although this procedure
consists on the search of the Huffman zero pattern that
maximize the code efficiency η in (12), it also provides a
sequence with a very ridge ambiguity function.

4. Coding Performance

In this section we compare the performance of the
proposed Huffman sequence design with two other linear
coding approaches described in [3] and [4]. First we evaluate
the matched and mismatched filter output for the different
coding methods. Successively, by exploiting the Field II
simulator [6], we compare the scan-lines amplitudes ob-
tained with a B-mode imaging approach and a specific
beamforming scheme, taking into account also the tissue
attenuation (e.g. the ambiguity function impact).
We consider a linear code length N = 26 and a pulse
shaping waveform p[n] designed as a 120 taps FIR filter
with B = 2.6 MHz that implements the Gaussian (α = 3.5)
window described in [10], whose pulse compression perfor-
mance are better evaluated in [11]. The up-sampling factor
has been set to M = dfs/Bc = 38, which corresponds to a
signal duration T ≈ 10µs at fs = 100 MHz.
The Huffman sequence has been generated according to the
Ackroyd approach [9], by setting in (12) the parameter X
in order to guarantee MSR = 100 dB.
For a first comparison we use the binary inverse filtering
(BIF) code sequence found in [3] with N = 26. This is the
”near optimal sequence” and a FIR least square inverse filter
is employed as pulse compression mismatched filtering. We
use a filter code length Nψ = 3N , as suggested in [3].
An alternative linear CE is the Golay coding approach
described in [4], which provides ideal impulse-like auto-
correlation performance at the price of a double transmission
and, consequently, of a frame-rate reduction in B-mode im-
ages. Additionally, motion artifacts are expected to degrade
the side-lobe cancellation.
The performance are evaluated when the received signal is
altered by the presence of a transducer impulse response.
More precisely we consider a 4 MHz transducer with 65%
of fractional bandwidth, modeled as a linear band-pass filter
implemented as a two stage 101 taps FIR filter that employs
Hamming windowing.
Fig. 2 compares the matched filter output R̃

r̃H s̃H

[k] of the
Huffman sequence, versus the mismatched filter output of a
binary sequence with inverse filtering designed as [3] and
versus a double transmission Golay matched filter as in [4],
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Figure 2. Pulse compression performance comparison
in absence of frequency-dependent attenuation.

in the absence of frequency-dependent attenuation. It is clear
that, in this scenario, the Golay approach provides ideal
MSR performance, the inverse filtering method guarantees
MSR ≈ 45 dB, while the Huffman coding is designed in
order to have MSR = 100 dB. The main lobe, and thus
the axial resolution, of all the three methods is identical.
Indeed it can be easily demonstrated that for linear coding
the main-lobe amplitude depends only on the pulse shaping
function p[n] that is used (see [11] for further details).

Table 1. Performance comparison of Huffman, (BIF)
[3] and Golay [4] codes in frequency-flat media.

Huffman BIF [3] Golay [4]
GSNR (dB) 9.3 8.9 13.6
MSR (dB) 100 45 ∞

Axial Resolution (mm) 1.7 1.7 1.7

Table 1 shows that, as concern the GSNR performance, the
Huffman code largely outperforms the single transmission
(BIF) described in [3], while the Golay code [4], also thanks
to its double transmission, provides significantly higher
values of GSNR.

Fig. 2 and Table 1 suggest that, in the absence of
frequency-dependent attenuation, the Golay approach out-
perform the others at the price of a reduction of the B-mode
frame-rate. In order to better judge the coding performance
in a realistic scenario, we evaluate also the pulse com-
pression output in the presence of a frequency-dependent
attenuating medium ((β)dB = 0.7dB/(MHz · cm)) and also
considering a beamforming technique. More precisely we
ran ultrasound imaging simulations by exploiting Field II
[6] to model the probe, the frequency-dependent tissue as
well as the impact of the beamforming. We fixed 8 points
scatterers along the axial direction, spaced 20 mm from each



other, at absolute distances ranging from 40 to 200 mm
from the transducer, which is modeled as a 32 elements
phased array probe. We also used a fixed focus transmission
beamforming [12] at 100 mm distance and a dynamic receive
beamforming [12]. As we did for the results of Fig. 2,
each piezoelectric element is modeled by a filter with center
nominal frequency f0 = 4 MHz and with 65% fractional
bandwidth.
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Figure 3. Compressed central rf-line in frequency-
independent (left) and frequency-dependent attenuat-
ing medium (right) for a) Huffman coding (top) - b) BIF
coding (middle) - c) Golay coding (bottom).

Fig. 3 (a)-(c) show the compressed RF-line in a frequency-
independent and in frequency-dependent mediums (β =
0.7dB/(MHz · cm)) for Huffman, BIF and Golay coding,
respectively. It is now evident that, in the presence of
attenuation, both the BIF and the Golay coding suffer a
pronounced degrade of MSR, especially for far scatterers.
On the contrary, thanks to the quasi-ridge ambiguity func-
tion of the design we propose, Huffman coding provides
very good performance also in the presence of frequency-
dependent attenuation, thus outperforming the other linear
CE approaches in practical scenarios.

5. Conclusions

This paper has presented a new approach for linear
coding excitation in medical ultrasound systems, based on
Huffman coding theory. The transmitted Huffman sequence

is designed by a technique that, for a fixed code length,
optimizes the code efficiency and thus the final GSNR and
that also provides a very good ambiguity function to ensure
robustness of the system against frequency-dependent tissue
attenuations. Pulse compression is performed by a matched
filtering approach and provides a very good contrast reso-
lution if compared with single [3] and double transmission
[4] coding, especially in attenuating tissues.
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