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We evaluate the probability of error of linearly modulated signals, such as phase-shift keying (PSK) and quadrature amplitude
modulation (QAM), in the presence of Gaussian cochannel interference (CCI) and Rayleigh fading channels. Specifically, we
assume that the fading channel of the CCI is maximally correlated with the fading channel of the signal of interest (SOI). In
practical applications, the maximal correlation of the CCI channel with the SOI channel occurs when the CCI is generated at the
transmitter, such as the multiuser interference in downlink systems, or when a transparent repeater relays some thermal noise
together with the SOI. We analytically evaluate the error probability by using a series expansion of generalized hypergeometric
functions. A convenient truncation criterion is also discussed. The proposed theoretical approach favorably compares with
alternative approaches, such as numerical integration and Monte Carlo estimation. Among the various applications of the
proposed analysis, we illustrate the effect of nonlinear amplifiers in orthogonal frequency-division multiplexing (OFDM)
systems, the downlink reception of code-division multiple-access (CDMA) signals, and the outdoor-to-indoor relaying of Global
Positioning System (GPS) signals.

1. Introduction

Thermal noise, fading channels, and cochannel interference
(CCI) are among the main sources of performance degra-
dation in wireless communication systems. For fading chan-
nels, the theoretical evaluation of the system performance
has been extensively explored in the technical literature
(see [1, 2], and the references therein), mainly in terms
of symbol-error probability, equivalently known as symbol-
error rate (SER), and of bit-error probability, also called
bit-error rate (BER). In the last decades, the BER analysis
has been extended to include the presence of faded CCI.
Krishnamurthi and Gupta have investigated the BER of
QPSK and 8-PSK when the signal of interest (SOI) and a
single interferer are affected by independent Rayleigh fading
channels [3]. Beaulieu and Abu-Dayya have evaluated the
BER of QPSK when the SOI is subject to Nakagami fading
and the interferer is affected by Rayleigh fading [4]. The BER

analysis in Nakagami fading channels has been subsequently
extended by Aalo and Zhang to multiple interferers, whose
CCI can be modeled as Gaussian, under the assumption that
the SOI employs differential PSK [5]. The BER of BPSK-
modulated SOI with multiple CCI subject to Rayleigh fading
has been studied also in the presence of multiple receive
antennas [6–8].

The common feature of all the mentioned research stud-
ies is that the fading experienced by the CCI is independent
of the fading experienced by the SOI. However, in many
practical scenarios, the fading channel of the CCI and the
fading channel of the SOI are highly correlated [9, 10].
In some important cases, this correlation is at maximum
level, for example, when both the SOI and the CCI are
subject to the same fading channel. For instance, this scenario
happens when the CCI is generated at the transmitter,
such as the multiuser interference in code-division multiple-
access (CDMA) downlink systems [11]. Other examples of
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transmitter-generated CCI include the nonlinear distortion
caused by the high-power amplifier in orthogonal frequency-
division multiplexing (OFDM) systems [12, 13], and the
thermal noise produced by the front-end of a transparent
transponder that relays Global Positioning System (GPS)
signals from outdoor to an indoor receiver [14]. In all these
scenarios, the CCI is well modeled by a Gaussian random
variable. Despite the nonnegligible number of scenarios of
interest, there have been few theoretical studies about the
BER performance in the presence of CCI that is subject to the
same fading channel of the SOI. Recently, Beaulieu and his
coworkers have analyzed the BER performance when the SOI
and the CCI experience correlated Rayleigh fading, assuming
multiple receive antennas and maximal ratio combining [15,
16]. However, the analysis of [15, 16] is valid only for BPSK-
modulated SOI, and for multiple interferers that use BPSK;
therefore, the obtained results are not valid when the CCI is
Gaussian.

In this paper, we develop a SER analysis for linear
modulations in Rayleigh fading channels, when the CCI
is modeled as Gaussian at the decision variable. The
proposed analysis can be employed in order to predict the
maximum amount of interference that can be tolerated
at the receiver, given a fixed performance requirement.
We focus on maximally correlated fading channels, that
is, we assume that the CCI is subject to the same fading
channel that affects the SOI. Specifically, we analytically
assess the error probability by using a series expansion of
generalized hypergeometric functions [17]. Different aspects
of the proposed formula are considered, such as, alternative
expressions, series truncation criterion, BER with Gray
coding, and effect of phase errors. We compare the proposed
analysis with two alternative approaches, that is, numerical
and statistical. The numerical approach uses Laguerre-Gauss
quadrature [18] to evaluate the SER expressed as a single
integral of a real variable. The statistical approach estimates
the SER by means of a Monte Carlo method that shares many
similarities with semianalytic evaluation [19]. We show that
the proposed theoretical method enjoys a better accuracy
with respect to both numerical and statistical methods, and
that our theoretical results can accurately predict the SER
performance in many different scenarios. Specifically, we
focus on three applications: OFDM systems subject to high-
power amplifier nonlinearities, CDMA detectors impaired
by multiuser interference in downlink transmissions, and
GPS receivers aided by outdoor-to-indoor relays. However,
our analysis is quite general, since it can be applied to any
communication system that is impaired by Gaussian CCI
generated at the transmitter, when the channel experiences
Rayleigh fading. Note that for some particular cases, the CCI
generated at the receiver can be interpreted as generated
at the transmitter. This happens, for instance, in OFDM
systems affected by carrier frequency offset, where the
frequency mismatch between the local oscillators of the
receiver and of the transmitter can be attributed to the
transmitter [20]. Our analysis is valid for these particular
cases as well.

The remainder of this paper is organized as follows. In
Section 2, we analytically evaluate the error probability and

discuss how to safely truncate the resulting series expansion.
Section 3 compares the proposed analysis with alternative
approaches based on numerical integration or on Monte
Carlo methods. In Section 4, we show that our theoretical
results closely characterize the error performance in different
application scenarios. Section 5 contains some concluding
remarks.

2. Error Probability Analysis

We consider a signal model expressed by

z̃[m] = c[m]s[m] + c[m]i[m] + ñ[m], (1)

where z̃[m] is the signal received at the time index m, c[m] is
the complex-valued coefficient that represents the slow flat-
fading channel, s[m] is the SOI, characterized by zero mean
and power σ2

S , i[m] is the circularly-symmetric complex
Gaussian CCI, with zero mean and power σ2

I , and ñ[m]
is the zero-mean additive white Gaussian noise (AWGN)
at the receiver side, with power σ2

N. The symbols s[m],
independent and identically distributed, are drawn from a
common constellation like QAM or PSK. The three signals
s[m], i[m], and ñ[m], as well as the channel coefficient c[m],
are assumed as mutually independent. From (1), it is obvious
that the two fading channels experienced by the SOI and
by the CCI are maximally correlated, because the coefficient
c[m] is the same for both SOI and CCI.

Since we assume symbol-rate sampling and symbol-by-
symbol detection, we drop the time index m. Rayleigh fading
is assumed, that is, by expressing the channel coefficient
as c = re jθ , the probability density function (pdf) of the
envelope r is expressed by [2]

p(r) = 2r
Ω
e−r

2/Ωu(r), (2)

where u(r) is the unit step function and Ω = E{r2}.
The phase θ, independent of r, is uniformly distributed in
[0, 2π). We first assume that the receiver is able to perfectly
compensate for the phase shift θ introduced by the channel.
Therefore, the decision variable is z = e− jθ z̃, which is
expressed by

z = rs + ri + n, (3)

where n = e− jθñ.
In order to analytically evaluate the SER in fading

channels, different methods are available, such as the direct
method (also known as the pdf method), the moment
generating function (MGF) method, and the characteristic
function (CHF) method [2, 21]. Basically, the symbol-
error probability Pe is obtained by averaging the conditional
symbol-error probability Pec(r) over the fading statistics
p(r), as expressed by

Pe =
∫ +∞

0
Pec(r)p(r)dr. (4)

The direct method consists in analytically solving the integral
in (4), after that the pdf p(r) has been calculated. On the
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contrary, the MGF (or the CHF) method translates the
problem (4) into the frequency domain, by exploiting the
Laplace (or the Fourier) transform of p(r) [2, 21]. Usually,
the MGF and the CHF methods are convenient when p(r)
is difficult to obtain [21]. In our case, p(r) is known and
therefore we employ the direct method.

When conditioned on the fading envelope r, the overall
interference-plus-noise term ri + n in (3) is Gaussian dis-
tributed. Therefore, the conditional symbol-error probability
Pec(r) can be expressed by

Pec(r) = αQ
(√

γρ(r)
)

, (5)

where Q(x) = (2π)−1/2 ∫ +∞
x e−ν2/2dν is the Q-function [22],

ρ(r) is the conditional signal-to-interference-plus-noise ratio
(SINR), expressed by

ρ(r) = r2σ2
S

r2σ2
I + σ2

N
, (6)

and α and γ are two constants that depend on the constella-
tion format. Actually, (5) is exact only for BPSK [23], but it
is a good approximation for both M-PSK with constellation
size M > 2 and M-QAM [2]. Although (5), for M-PSK and
M-QAM, could be replaced by

Pec(r) =
NQ
∑

i=1

αiQ
(√

γiρ(r)
)

, (7)

where NQ is an appropriate number of terms, here we use
(5) for simplicity. By inserting (5), (6), and (2) in (4), the
symbol-error probability Pe becomes

Pe = 2α
∫ +∞

0
Q

⎛

⎝

√

√

√

√γ
r2σ2

S

r2σ2
I + σ2

N

⎞

⎠

r

Ω
e−r

2/Ωdr. (8)

The integrals 1of the same kind of (8), in the past, have been
considered complicated to solve [11], mainly because the
conditional symbol-error probability Pec(r) is a complicated
function of r. However, an analytical solution of (8) exists,
and its derivation is shown in Appendix A. The solution of
(8) can be expressed as

Pe = α

2
−
α
√

2γΩ

4
σS

σN
e−(γ/2)σ2

S /σ
2
I

+∞
∑

k=0

1
k!

(

γ

2
σ2

S

σ2
I

)k

× 2F0

(

k +
3
2

,
1
2

; ;−Ω σ2
I

σ2
N

)

,

(9)

where pFq(·) stands for the generalized hypergeometric
function [17], defined by

pFq
(

a1, . . . , ap; b1, . . . , bq; x
)

=
+∞
∑

l=0

(a1)l . . .
(

ap
)

l

(b1)l . . .
(

bq
)

l

xl

l!
, (10)

where (a)l = Γ(a + l)/Γ(a) is the Pochhammer’s symbol (or
rising factorial) expressed in terms of the Gamma function
[22]. Instead of (9), the symbol-error probability Pe can be
equivalently expressed using alternative formulas, as detailed
in Appendix B. We highlight that the solution (9) of (8) is
exact, that is, it does not involve any approximation of the
Q-function [24, 25].

2.1. Truncation Criterion. For practical purposes, the evalu-
ation of (9) requires a truncation of the infinite series. As
a consequence, we investigate how many terms (and which
ones) are necessary to obtain an accurate approximation
of the exact result. To evaluate the effect of the truncation
error, we resort to a mixed approach that uses both graphical
considerations and analytical approximations. Specifically,
we express (9) as

Pe = α

⎛

⎝

1
2
−

+∞
∑

k=0

t(k)

⎞

⎠, (11)

t(k) =
√

2ρN

4
e−ρI/2 1

k!

(

ρI

2

)k

2F0

(

k +
3
2

,
1
2

; ;−ρN

ρI

)

, (12)

where the parameters ρI = γσ2
S /σ

2
I and ρN = γΩσ2

S /σ
2
N

represent the scaled signal-to-interference ratio (SIR) and the
scaled signal-to-noise ratio (SNR), respectively. The scaling
factor γ, which is the same for both ratios, accounts for
different constellations. Figures 1, 2, and 3 show that the
shape of t(k) in (12) is almost independent of the scaled SNR
ρN, and it practically depends on the scaled SIR ρI only. In
particular, Figure 3 can be used to select only the relevant
terms of the series in (9). Interestingly, these relevant terms
are adjacent, and therefore a very good approximation of the
exact SER in (9) can be obtained as

Pe,approx = α

⎛

⎝

1
2
−

kmax
∑

k=kmin

t(k)

⎞

⎠, (13)

by a convenient choice of kmin and kmax. By using (13) instead
of (11), the computational complexity of the SER evaluation
is reduced, especially when the number of terms κ = kmax −
kmin + 1 is low. Note that since the term t(k) is nonnegative,
Pe,approx ≥ Pe, that is, the approximation (13) is an upper
bound.

To determine kmin and kmax, we exploit the two following
observations, suggested by Figure 3:

(i) t(k) has a parabolic-like shape in the logarithmic
scale, and hence a Gaussian-like shape in the linear
scale.

(ii) For sufficiently high values of the scaled SIR ρI, the
maximum of t(k) is obtained when k ≈ �ρI/2�.

Hence, in order to find kmin and kmax, we approximate
t(k) with the Gaussian function G(k) expressed by

G(k) = A√
2πσ

e−(k−η)2/(2σ2), (14)

where the mean value is η = �ρI/2�, and A and σ are two
parameters to be determined. We have

A =
∫ +∞

−∞
G(x)dx ≈

∫ +∞

0
G(x)dx ≈

+∞
∑

k=0

t(k) = 1
2
− Pe

α
≈ 1

2
,

(15)

where the first approximation is valid when the scaled SIR
ρI, or equivalently η, is sufficiently high, while the last
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Figure 1: Evaluation of t(k) in (12) when ρI = 10 dB.
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Figure 2: Evaluation of t(k) in (12) when ρI = 30 dB.

approximation is valid when the symbol-error probability Pe
is sufficiently low. Therefore, we set A = 1/2. In order to
determine σ , we impose G(η) = t(η), which leads to

σ = 1
2
√

2πt
(⌊

ρI/2
⌋) . (16)

As a result, our truncation criterion selects kmin = max{�η−
Tσ�, 0}, and kmax = �η + Tσ	, where T is a parameter that
controls the approximation accuracy of (13). This parameter
can be chosen by exploiting the Gaussian integral properties

Table 1: Parameters of the series truncation for T = 6 and ρN =
1000.

ρI (dB) η σ kmin kmax κ

10 5 2.442 0 20 21

15 15 3.975 0 39 40

20 50 7.143 7 93 87

25 158 12.61 82 234 153

30 500 22.40 365 635 271

35 1581 39.81 1342 1820 479

40 5000 70.79 4575 5425 851

45 15811 125.9 15055 16567 1513

50 50000 223.8 48657 51343 2687

and by denoting with ε the approximation error introduced
by (13), we have

ε = α
kmin−1
∑

k=0

t(k) + α
+∞
∑

k=kmax+1

t(k)

≈ α
∫ η−Tσ

−∞
G(x)dx + α

∫ +∞

η+Tσ
G(x)dx = αQ(T).

(17)

Therefore, assuming a maximum error ε, T can be chosen
as T = Q−1(ε/α). For instance, in QPSK, where α = 1, an
approximation error ε ≈ 10−3 is expected when T = 3,
while ε ≈ 10−9 for T = 6. The proposed criterion also
permits to check whether the approximated SER in (13) is
acceptable within a desired accuracy (e.g., relative error lower
than or equal to 1%), by simply checking whether αQ(T) ≤
10−2(Pe,approx + αQ(T)) is verified or not. If it is not verified,
the value of T should be increased further.

Figure 4 confirms that the proposed truncation criterion
produces accurate results. Indeed, when T = 3, the
approximation error is ε ≈ 10−3, as expected. Table 1 shows
the values of kmin and kmax, as well as the number of terms
κ, for T = 6 when ρN = 30 dB. From Table 1, it is clear that
for low values of the scaled SIR ρI, the number of terms κ is
relatively small. On the other hand, for higher values of ρI, κ
increases considerably. However, in this case, the variability
of t(k) with respect to k is reduced, that is, t(k + 1) ≈ t(k).
Consequently, the κ terms are not all necessary, and only a
single term out of F consecutive terms can be evaluated. This
way, the evaluation complexity is reduced by a factor F, by
exploiting

kmax
∑

k=kmin

t(k) ≈ F
kmax
∑

k=kmin
k mod F=0

t(k). (18)

2.2. Bit-Error Probability. In many cases, the bit-error
probability, or BER, is a preferred performance indicator
with respect to the symbol-error probability. Anyway, the
presented SER approach can be easily extended to the BER
evaluation. Indeed, for M-QAM and M-PSK with Gray
coding, assuming that M is a power of two, the BER can
be expressed as a linear combination of Q-functions with
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Figure 3: Evaluation of t(k) when ρN = 30 dB. Comparison between the exact value in (12) and the approximation in (14). The asterisks
denote kmin and kmax obtained for T = 3.
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Figure 4: Effect of the truncation error (ρI = 13 dB). For T = 3
(T = 6), our criterion produces κ = 20 (κ = 29). The exact curve is
obtained by using κ = 101. In all three cases, kmin = 0.

different arguments [26, 27], similarly to the SER in (7). For
instance, the exact conditional BER for square M-QAM with
Gray coding is expressed by [26]

PM-QAM
cbe (r)

= 1√
M log2

√
M

log2

√
M

∑

j=1

(1−2− j)
√
M−1

∑

i=0

(−1)�2
j−1i/

√
M�

×
(

2 j − 2

⌊

2 j−1i√
M

+
1
2

⌋)

Q

⎛

⎝

√

3(2i + 1)2

M − 1
ρ(r)

⎞

⎠

(19)

while a very good approximation for M-PSK with Gray
coding is expressed by [27]

PM-PSK
cbe (r)

≈ 2

max
{

log2M, 2
}

max{M/4,1}
∑

i=1

Q

⎛

⎝

√

2ρ(r)sin2
(2i− 1)π

M

⎞

⎠,

(20)

where ρ(r) is the SINR per symbol, expressed by (6). In
both cases, the conditional BER is expressed as a finite sum
of weighted Q-functions. Therefore, the final BER averaged
over the fading channel will be a finite sum of terms, each
one expressed by (9), with a convenient definition of the
parameters α and γ. There are also other constellations whose
conditional BER can be expressed as a finite sum of weighted
Q-functions, such as rectangular QAM [26], cross QAM [28],
and hierarchical QAM [29]. Our approach is valid for these
constellations too.

2.3. Effect of Phase Error. We have assumed so far that the
phase shift θ introduced by the channel has been perfectly
estimated and compensated. We now remove this limitation

and assume that the received sample is obtained as ẑ = e− j ̂θz̃,

where ̂θ is an estimate of θ. Therefore, we have

ẑ = re jθe s + re jθe i + e jθen, (21)

where θe = θ − ̂θ is the phase error. Since the CCI i
is circularly Gaussian, ̂i = e jθe i in (21) has the same
statistical properties of i. The same property holds true also
for the AWGN term n. As a result, the phase error θe only
affects the SOI. If we assume that θe is deterministic (non
random), the additional multiplicative term e jθe mixes the
I/Q components and practically acts as an SINR loss that
increases the conditional symbol-error probability Pec(r).
For BPSK and QPSK, when θe /= 0, (5) is replaced by the
following expression

PBPSK
ec (r) = αQ

(√

γ cos2θeρ(r)
)

,

PQPSK
ec (r) = α

2
Q
(√

γ(1− sin 2θe)ρ(r)
)

+
α

2
Q
(√

γ(1 + sin 2θe)ρ(r)
)

,

(22)

respectively, where α = 1 and γ = 2 for BPSK, and α = γ = 1
for QPSK. Therefore, the proposed analysis can be applied
also in the presence of phase errors, by incorporating the
factors cos2θe, 1− sin 2θe, and 1 + sin 2θe, into the parameter
γ in (9).

2.4. Lower Bounds. The truncation criterion described in
Section 2.1 can be interpreted as a tight upper bound on the
SER. Here, we derive some simple lower bounds obtained
by neglecting the AWGN with respect to the CCI, and vice
versa. When the AWGN power σ2

N is equal to zero, from (8)
it follows

Pe ≥ Pe,LB1 = 2α
∫ +∞

0
Q

⎛

⎝

√

√

√

√γ
σ2

S

σ2
I

⎞

⎠

r

Ω
e−r

2/Ωdr = αQ
(

√

ρI

)

,

(23)

which of course depends only on the scaled SIR ρI = γσ2
S /σ

2
I .

Clearly, the lower bound (LB) (23) is valid independently
of the channel pdf, provided that the CCI is Gaussian.
Conversely, when the CCI power σ2

I is equal to zero, from
(8) we obtain

Pe ≥ Pe,LB2 = 2α
∫ +∞

0
Q

⎛

⎝

√

√

√

√γ
r2σ2

S

σ2
N

⎞

⎠

r

Ω
e−r

2/Ωdr

= α

2

(

1−
√

ρN

2 + ρN

)

,

(24)

which obviously depends only on the scaled SNR ρN =
γΩσ2

S /σ
2
N. The LB (24) represents the classical error per-

formance in (CCI-free) Rayleigh fading scenarios [23].
Section 4 will confirm that (9) fulfills both the lower bounds
(23) and (24).
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2.5. Extension to Signal-Dependent Interference or to Partially
Correlated Channels. In the system model expressed by (1)
and (3), we have made two main assumptions.

(A1) The CCI i is independent of the SOI s.

(A2) The CCI and the SOI experience the same fading
channel c = re jθ , that is, the channel coefficients of
the CCI and of the SOI are maximally correlated.

In this subsection, we show that the results obtained in the
previous subsections can be used also when one of the two
assumptions is no longer valid. First, let us assume that
Assumption (A1) is not valid; that is, the CCI and the SOI are
correlated (and consequently dependent), while maintaining
Assumption (A2). Specifically, we replace Assumption (A1)
with

(B1) i = aIs+iIND, where aI = E{is∗}/E{|s|2} is a constant,
characterized by |aI| < 1, that takes into account
the crosscorrelation between the CCI and the SOI,
and iIND is a zero-mean circularly symmetric complex
Gaussian random variable independent of s.

Using Assumption (B1), the CCI i is a SOI-dependent
Gaussian mixture. In this case, (1) becomes

z̃ = cs + c(aIs + iIND) + ñ = c(1 + aI)s + ciIND + ñ, (25)

which is clearly in the same form of (1): now the SOI includes
the multiplicative coefficient 1 + aI, while the CCI iIND is
independent of the SOI. Therefore, when aI is known, the
error probability can be analyzed using the same approach
described in the previous subsections, by including the
coefficient |1 + aI|2 into the SOI power.

Next, let us maintain Assumption (A1), and assume that
(A2) is not valid, that is, the channel coefficients cI of the
CCI and cS of the SOI are different, though both zero-mean
Gaussian distributed. Specifically, we replace Assumption
(A2) with

(B2) cI = aCcS + cIND, where aC = E{cIc
∗
S }/E{|cS|2} is

a constant, characterized by |aC| < 1, that takes
into account the crosscorrelation between the fading
channels of the CCI and of the SOI, and cIND is a
zero-mean circularly symmetric complex Gaussian
random variable independent of cS.

Using Assumption (B2), the two fading channels cI and cS are
partially correlated. In this case, (1) becomes

z̃ = cSs + cIi + ñ = cSs + (aCcS + cIND)i + ñ

= cSs + cSaCi + ñTOT,
(26)

where ñTOT = cINDi + ñ. Since the product of two zero-mean
independent Gaussian random variables is characterized
by a K0-Bessel pdf (see [30, Equation 6.2]), the pdf of
each component (real or imaginary) of ñTOT = cINDi +
ñ is the convolution between a K0-Bessel function and
a Gaussian function. Therefore, ñTOT is in general non-
Gaussian. However, when cINDi and ñ have approximately

the same power, or when the thermal noise ñ dominates, a
Gaussian approximation for ñTOT is reasonable, and hence
the previous analysis can be employed as well.

When both Assumptions (A1) and (A2) are replaced by
(B1) and (B2), (1) becomes

z̃ = cSs + cIi + ñ = cSs + (aCcS + cIND)(aIs + iIND) + ñ

= cS(1 + aCaI)s + cSaCiIND + ñTOT,
(27)

where ñTOT = cINDaIs + cINDiIND + ñ. Now ñTOT includes the
SOI-dependent term cINDaIs, which is a Gaussian mixture,
and hence an analysis based on the Gaussian approximation
of ñTOT could lead to deceiving results.

3. Numerical Methods

In Section 2, we have presented an analytical method to
evaluate the symbol-error probability. Alternatively, since
the symbol-error probability (8) is expressed as a unique
definite integral, numerical integration methods could be
used. In this section, we present the SER results obtained
using a numerical integration method known as Laguerre-
Gauss quadrature [18]. In addition, we consider a statistical
approach that makes use of Monte Carlo integration.

3.1. Laguerre-Gauss Quadrature. Laguerre-Gauss (LG)
quadrature, also known as Gauss-Laguerre quadrature, is a
Gauss quadrature over the interval [0, +∞) with weighting
function W(x) = e−x [18, 22]. By using the change of
variables x = r2/Ω, (8) becomes

Pe = α
∫ +∞

0
Q

⎛

⎝

√

√

√

√γ
xΩσ2

S

xΩσ2
I + σ2

N

⎞

⎠e−xdx, (28)

which is suitable for LG quadrature. Indeed, LG quadrature
performs the approximation

∫ +∞

0
e−x f (x)dx ≈

κ
∑

k=1

wk f (xk), (29)

where κ is the number of terms, xk is the kth zeros of the
Laguerre polynomial Lκ(x), and

wk = xk
(κ + 1)2[Lκ+1(xk)]2 , (30)

is the kth weight [18, 22]. Consequently, we have

Pe ≈ PLG
e = α

κ
∑

k=1

xk
(κ + 1)2[Lκ+1(xk)]2Q

⎛

⎝

√

√

√

√γ
xkΩσ

2
S

xkΩσ
2
I + σ2

N

⎞

⎠.

(31)

The main difficulty of (31) arises when the number of
terms κ increases, since the computational complexity also
increases. Note that for a fixed κ, the abscissas xk and the
weights wk are constant, and hence can be stored.

Figure 5 illustrates the symbol-error probability obtained
with LG quadrature, in the same scenario of Figure 4. Clearly,
the approximation error is relevant, even when κ = 512
terms are used in (31). However, as shown in Figure 4,
our analytical approach, summarized by (12)-(13), produces
accurate results by summing κ = 29 terms only.
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3.2. Monte Carlo Integration. Monte Carlo (MC) integration
is a statistical approach that evaluates the symbol-error
probability by means of repeated outcomes of a computer-
generated random variable. The core idea is the following
approximation:

Pe =
∫ +∞

0
Pec(r)p(r)dr ≈ 1

κ

κ
∑

k=1

Pec(rk), (32)

where {rk}κk=1 are i.i.d. randomly generated numbers with
pdf p(r), and κ is the number of outcomes. Specifically, the
integral (8) is approximated as

Pe ≈ PMC
e = α

κ

κ
∑

k=1

Q

⎛

⎝

√

√

√

√γ
r2
kσ

2
S

r2
kσ

2
I + σ2

N

⎞

⎠, (33)

where rk is Rayleigh distributed with the same pdf of r in
(2). Noteworthy, this MC method can be interpreted as a
semianalytic way to evaluate the symbol-error probability
[19]. Indeed, in (33), the stochastic variability due to the
constellation symbols and to the noise is analytically treated
by using the Q-function, whereas the stochastic variability
caused by the fading channel is simulated by means of
repeated trials. This leads to a mixed analytical-simulated
approach. Differently, pure simulation approaches employ
repeated trials to generate not only the channel realizations,
but also the symbol realizations and the noise realizations.
The key feature of MC methods is that they can be used
for any pdf p(r). However, for specific distributions, such as
Rayleigh, the analytical approach could be more accurate.

Figure 6 displays the symbol-error probability obtained
with MC integration, in the same scenario of Figures 4 and 5.
It is evident that using κ = 216 = 65536 does not guarantee a
good approximation, in contrast with the κ = 29 terms used
by the analytical approach.

4. Applications

Herein we apply our theoretical method to evaluate the SER
performance in three practical scenarios: OFDM systems
subject to high-power amplifier nonlinearities, downlink
CDMA systems in the presence of multiuser interference,
and GPS receivers equipped with outdoor-to-indoor relays.
However, there exist many other scenarios of interest, not
considered in this paper for sake of conciseness. For instance,
the proposed analytical approach can be used to predict
the error performance of OFDM systems in the presence
of intercarrier interference caused by carrier frequency
offsets [20], of decorrelating multiuser receivers in nonlinear
channels [31], and of multicarrier CDMA systems with
transmitter-generated impairments [32]. In all these cases,
maximal correlation between the fading channel of the SOI
and of the CCI is experienced.

4.1. OFDM with Nonlinear Amplification and Frequency-
Selective Fading. The generic block of an OFDM system with
K subcarriers can be expressed as u = TCPFHs [33], where s
is the column vector of data symbols, F is the K × K unitary
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Figure 5: Approximation by Laguerre-Gauss quadrature (ρI = 13
dB).
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Figure 6: Approximation by Monte Carlo integration (ρI = 13 dB).

FFT matrix, and TCP is the (K+L)×K matrix that inserts the
cyclic prefix (CP) of length L. After high-power amplification
by means of an instantaneous nonlinear amplifier (NLA),
by exploiting the Bussgang theorem, and assuming that the
number of subcarriers is sufficiently high (e.g., K > 32), the
transmitted block can be modeled by [12, 13]

v = α̃u + d = α̃TCPFHs + TCPiNL, (34)

where α̃ represents the average linear amplification gain,
and iNL is the nonlinear distortion, which becomes d =
TCPiNL after CP insertion. In (34), the nonlinear distortion
d, which represents the CCI, is uncorrelated with the linear
part α̃u, which represents the SOI. We assume that the
transmitted signal v passes through a slowly time-varying
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frequency-selective multipath fading channel, with finite
impulse response collected in the vector h = [h(0) · · ·h(L−
1) 0 · · · 0]T), which contains L zero-mean complex Gaus-
sian taps, padded with K − L zeros. At the receiver side, the
CP is discarded, and an FFT is performed, thereby obtaining
the received vector

y = α̃Λs + ΛFiNL + n, (35)

where Λ = Diag(λ), with λ = [λ0 . . . λK−1]T = Fh, and n is
the AWGN. By assuming perfect channel-state information,
and performing a zero-forcing equalization, we obtain z =
α̃−1Λ−1y = s + α̃−1FiNL + α̃−1Λ−1n. By denoting with [a]k
the kth element of a generic vector a, the decision variable in
the kth subcarrier is expressed by [z]k = [s]k + α̃−1[FiNL]k +
α̃−1λ−1

k [n]k, or equivalently by

rk[z]k = rk[s]k + rkα̃
−1[FiNL]k + e− j arg(λk)α̃−1[n]k, (36)

where rk = |λk|. Clearly, (36) is in the same form of (3),
where, in the right-hand side, the first term is the SOI, the
second term is the CCI, and the last is the AWGN. Since
the number of subcarriers is high, the term [FiNL]k can be
well approximated as Gaussian [12, 13]. Moreover, since the
channel taps are zero-mean complex Gaussian, rk in (36)
is a Rayleigh random variable, with the same pdf for all
the subcarriers. As a result, by setting σ2

S = E{|[s]k|2},
σ2

I = |α̃|−2E{|[FiNL]k|2}, and σ2
N = |α̃|−2E{|[n]k|2}, the

SER for coherent modulations can be expressed by (9).
Observe that σ2

S is independent of the subcarrier index,
provided that the same power is used for all the subcarriers
k. Similarly, σ2

N is independent of k because of the white
noise assumption. Actually, σ2

I is slightly dependent from the
subcarrier index k, but it is well approximated as constant
within the OFDM bandwidth [12]. Therefore, when the
same constellation is used for all the subcarriers, the SER
is practically independent of the subcarrier index. Note that
|α̃|2 and E{|[FiNL]k|2} can be computed using closed form
expressions derived from the characteristics of the NLA [12].

Figure 7 shows the SER of an OFDM system with K =
128 subcarriers, each one loaded with 16-QAM symbols. In
this case, α = 3 and γ = 1/5. A multipath channel with
exponential power-delay profile and length L = 16 has been
used in the simulation. We assume a perfectly predistorted
NLA at the transmitter, that is, a clipper of the envelope of
the input signal, with an output power back-off (OBO) equal
to 3 dB. The SER is plotted versus the receiver SNR, defined
as ρR = Ω(σ2

S +σ2
I )/σ2

N = ρN(γ−1 +ρ−1
I ), which is the apparent

SNR measured at the receiver side. Figure 7 exhibits a good
agreement between the theoretical SER and the simulated
one. A slight mismatch is present at high SNR. This slight
mismatch is not due to our truncation criterion, as verified
by its agreement with the lower bound (23). Indeed, despite
K = 128 is sufficiently high, the CCI, that is, the nonlinear
distortion in the frequency domain, is not exactly Gaussian,
but only approximately. Anyway, due to the fact that the SER
mismatch is really slight, the Gaussian approximation seems
to be acceptable.
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Figure 7: SER in OFDM systems (16-QAM, K = 128, L = 16, ideal
predistortion).

4.2. CDMA with Multiuser Detection and Frequency-Flat
Fading. In the downlink of a direct-sequence CDMA system,
the vector transmitted in a generic symbol interval can be
expressed as v = SAb [34], where b is a column vector of
size K containing the independent data symbols of the K
active users, A is the K × K diagonal matrix containing the
signal amplitudes, and S is the P × K containing the users’
spreading codes, which are assumed real with length P equal
to the processing gain. After passing through a slowly time-
varying frequency-flat channel with Rayleigh statistic, the
vector received by the kth user can be expressed by

yk = rke
jθkv + ηk, (37)

where rke jθk is the channel coefficient experienced by the
kth user, and ηk is the AWGN vector. Assuming perfect

phase estimation ̂θk = θk, the received vector after phase
compensation can be expressed by ỹk = e− jθkyk =
rkv + e− jθkηk = rkv + η̃k. In this context, two types of
detection methods are considered: a code-matched filter
(CMF) detector, which is a simple despreader [34], and
an approximated minimum mean-squared error (MMSE)
detector, which is a low-complexity version of the linear
minimum mean-squared error (LMMSE) multiuser detector
[34].

For the CMF detector, the decision vector is obtained by
performing the despreading operation

zk,CMF = SH ỹk = rkSHSAb + SH η̃k = rkRAb + nk, (38)

where zk,CMF is a column vector of size K that contains, in
its kth position, the decision variable of the user k, while
R = SHS contains the crosscorrelation coefficients of the
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spreading sequences. Therefore, the received symbol of the
kth user is expressed by

[

zk,CMF
]

k = rkAk[b]k + rk

K
∑

j=1
j /= k

ρk, jAj[b] j + [nk]k, (39)

where Aj = [A] j, j , ρk, j = [R]k, j , and [A]m,n denotes
the (m,n)th element of the matrix A. Obviously, (39) is
compliant with (3), because the first term is the Rayleigh-
faded SOI, the second term represents the CCI, where the
fading channel is the same experienced by the SOI, and the
last term is the AWGN. Under the assumption that the system
attends a high number of users K , for example, K ≥ 20,
and supposing that the K transmitted amplitudes {Aj}Kj=1
are almost equal, such as in satellite downlink channels [11],
the CCI term in (39) can be accurately approximated by a
Gaussian random variable. By setting σ2

S = E{A2
k|[b]k|2},

σ2
I =

∑K
j=1, j /= k ρ

2
k, jA

2
j E{|[b] j|2}, and σ2

N = E{|[nk]k|2}, the
SER for the kth user is expressed by (9).

If we use the LMMSE detector [34], instead of the
CMF, the decision vector is obtained as zk,LMMSE = (R +
σ2
ηk r

−2
k A−2)−1zk,CMF, where σ2

ηk is the AWGN power, that is,

E{ηkηHk } = σ2
ηk IP . To reduce the computational complexity

of the LMMSE receiver, an approximated minimum mean-
squared error (AMMSE) receiver can be obtained by replacing
the instantaneous fading power gain r2

k with its average value
Ωk = E{r2

k} [35]. It is worth noting that the AMMSE detector
is the flat-fading counterpart of the precombining LMMSE
receiver proposed in [36] for frequency-selective channels.
For the AMMSE detector, the decision vector is obtained
by left-multiplying the CMF vector zk,CMF in (38) with the
matrix Xk = (R + σ2

ηkΩ
−1
k A−2)−1. Hence, the received symbol

of the user k is expressed by

[

zk,AMMSE
]

k

= rk[XkRA]k,k[b]k + rk

K
∑

j=1, j /= k
[XkRA]k, j[b] j + [Xknk]k,

(40)

which is again in the same form of (3). It is easy to
verify that the individual interference terms (one for each
interfering user) in (40) have almost equal variance. As a
consequence, when the number of active users is sufficiently
high, the Gaussian approximation of the CCI is reasonable.
Therefore, also in this case the SER for the user k can be
expressed by (9), where σ2

S = [XkRA]2
k,kE{|[b]k|2}, σ2

I =
∑K

j=1, j /= k[XkRA]2
k, jE{|[b] j|2}, and σ2

N = E{|[Xknk]k|2}. In
general, the SER is different from user to user, since the CCI
power depends on the crosscorrelation coefficients {ρk, j}k /= j ,
which in general are not all equal.

Figure 8 highlights the SER performance of the CMF
receiver in a downlink CDMA environment with K = 20
active users, BPSK modulation (with α = 1 and γ = 2 in
(5)), and Gold codes with processing gain P = 31. Equal-
power users’ signals are assumed, that is, A2

k = A2. The SER,

averaged over all the active users, is plotted versus the user
SNR ρU, defined as ρU = ΩkA2/σ2

ηk , which is assumed equal
for all the users. In addition, Figure 8 displays that also the
SER of the AMMSE detector is accurately modeled by (9).

4.3. GPS with Transparent Relay. GPS is a well known
satellite-based system primarily employed for positioning,
navigation, and timing purposes [37]. We assume an indoor
GPS receiver aided by a fixed outdoor antenna that acts
as an outdoor-to-indoor wireless relay [14]. The relay is
transparent, that is, nonregenerative. We also assume that
the outdoor antenna is placed on the top of the building,
in order to maximize the number of visible satellites. This
configuration allows for a coarse positioning even when the
indoor receiver does not see any satellite.

In GPS, the information bits, BPSK-modulated with rate
fb = 50 bps, are transmitted by the satellites using direct-
sequence CDMA, with chip rate fc = 1.023 MHz [37]. The
spreading sequences, usually referred to as coarse-acquisition
(C/A) codes, are Gold codes of length P = 1023, which are
repeated N = 20 times within a bit interval [37]. The signal
received by the relay in a generic symbol interval of length
NP can be expressed by

v =
K
∑

k=1

bkAkDksk + ηOUT, (41)

where K is the number of satellites seen by the relay, bk is
the message bit of the kth satellite, Ak is the amplitude of
the kth satellite signal, Dk is a diagonal matrix that models
the Doppler shift fk due to the satellite motion, expressed
by [Dk]m = e j(φk+2πm fk/ fc), where φk is the initial phase, sk
is the column vector of size NP that contains the satellite-
specific C/A code, and ηOUT is the AWGN due to the outdoor
receiver. In (41), the multipath effect has been neglected
for two reasons. First, since the relay is placed the top of
the building, the surrounding objects are few. Second, the
multipath effect is usually nonnegligible for those satellites
that are near the horizon [37], but their signals can be
excluded by conveniently shaping the antenna pattern of the
outdoor antenna, since the outdoor antenna sees a sufficient
number of satellites with enough elevation. For simplicity of
explanation, in (41) we have modeled the K received signals
as time-synchronous; we will relax this assumption later on.

After relaying, the GPS signal is received by the indoor
detector. Since the L1 frequency ( fL1 = 1.57542 GHz) is
not far from the bands used for third-generation (3G)
cellular communications, we can use the indoor channel
models developed for 3G systems, where the channel taps are
Rayleigh distributed [38]. Multipath effects can be neglected
because the maximum delay spread, on the order of few
hundreds of nanoseconds [38], is much lower than the
chip period 1/ fc ≈ 1μs. Therefore, the signal received
by the indoor receiver can be expressed by y = re jθv +
ηIN = re jθ

∑K
k=1 bkAkDksk + re jθηOUT + ηIN, where re jθ is

the channel coefficient, and ηIN is the AWGN of the indoor
receiver. Assuming perfect compensation for the phase shift
and for the Doppler shift of the kth signal, the received signal
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after despreading can be expressed as ỹk = e− jθsTk DH
k y, which

leads to

ỹk = rbkAk + r
K
∑

j=1
j /= k

ik, j + rnk,OUT + nk,IN, (42)

where ik, j = bjAjsTk DH
k D js j is the cross-term contribution

due to the non-orthogonality of the Doppler-modified
spreading sequences Dksk and D js j , nk,OUT = sTk DH

k ηOUT
is the Gaussian CCI due to the relayed AWGN, and nIN =
e− jθsTk DH

k ηIN is the Gaussian AWGN. Since the maximum
Doppler shift is on the order of fMAX ≈ 5 kHz, the Doppler-
modified spreading sequences Dksk and D js j maintain their
low-crosscorrelation properties. Therefore, in (42), the cross-
terms {ik, j} are usually neglected by conventional receivers
[37], with unnoticeable effects especially when nk,OUT is high.
This happens also in the presence of asynchronism among
the K received signals [37], since the low-crosscorrelation
properties of the Gold codes are maintained for any shift
of the spreading sequences. As a result, the BER for the
message sent by satellite k can be expressed by (9), with
σ2

S = A2
k, σ2

I = E{|nk,OUT|2}, σ2
N = E{|nk,IN|2}, α = 1, and

γ = 2.
Figure 9 compares the theoretical BER with the simulated

one. We assume that the outdoor antenna sees K = 6
satellites, whose signals are asynchronous at the receiver side.
Without loss of generality, we focus on the detection of the
first satellite signal. The relative delays of the other K − 1
signals with respect to the first one are randomly generated
assuming a uniform distribution between 0 and P = 1023
chips. The Doppler shifts { fk}Kk=1 are uniformly distributed
between − fMAX and fMAX = 5 kHz. The amplitudes {Ak}Kk=1
are randomly chosen in order to reflect the different satellite
distances from the earth, which are between dMIN ≈
20000 km and dMAX ≈ 25000 km [37]. The BER is plotted
as a function of the indoor receiver SNR, which coincides
with ρN/2. Figure 9 evidently demonstrates that the proposed
analysis well predicts the BER performance for different
values of the outdoor antenna SNR, expressed as ρI/2. In
our simulation, the power sum of the cross-terms {ik, j} is
more than 20 dB lower than the CCI power, thereby vali-
dating the correctness of the approximation discussed after
(42).

5. Concluding Remarks

We have investigated the symbol-error probability of coher-
ent detection schemes in the presence of CCI and Rayleigh
fading. We have made two main hypotheses. First, there
exists maximal correlation between the fading channels
experienced by the SOI and by the CCI. This assumption
holds true in many scenarios, for example, when the inter-
ference is generated at the transmitter, such as in multiuser
downlink systems. Second, the CCI, which is independent
of the SOI, can be modeled as Gaussian at the decision
variable. This assumption also holds true in many scenarios,
such as when the decision variable is obtained by collecting
many elements, such as in CDMA or in OFDM systems.
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Figure 8: SER in CDMA downlink systems (BPSK, K = 20, P = 31,
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We have theoretically calculated the symbol-error probability
by using a series expansion of generalized hypergeometric
functions. Different features of the proposed approach have
been considered, such as an accurate criterion for the series
truncation, some alternative closed-form SER expressions,
and the effect of phase errors. Moreover, we have shown
that the proposed theoretical formula is more accurate than
two alternative approaches based on LG quadrature or on
MC integration. In addition, we have demonstrated that
our analytical findings can be used to foresee the error
performances in different scenarios. However, the proposed
evaluation method is quite general, and therefore it can be
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used also in other scenarios, not investigated in this paper,
where the SOI and the CCI experience maximally correlated
fading channels.

Appendices

A. Analytical Evaluation

By using the substitution β = r/
√
Ω, and setting ρN =

γΩσ2
S /σ

2
N = μ2 and ρN/ρI = Ωσ2

I /σ
2
N = λ2, (8) reduces to

Pe = 2α
∫ +∞

0
Q

⎛

⎝

√

√

√

√

β2μ2

β2λ2 + 1

⎞

⎠βe−β
2
dβ. (A.1)

Inserting Q(x) = (1/2) erfc(x/
√

2) in (A.1), and using y =
βμ/

√

2 + 2β2λ2, we obtain

Pe = 2αμ2
∫ μ/(

√
2λ)

0

y
(

μ2 − 2λ2y2
)2 e

−2y2/(μ2−2λ2 y2) erfc
(

y
)

dy.

(A.2)

Integrating (A.2) by parts, and substituting t = μ2 − 2λ2y2,
(A.2) becomes

Pe = α

2
− α

√
2

4
√
πλ

e(2−μ2)/(2λ2)
∫ μ2

0
e−μ

2/(λ2t)et/(2λ2)(μ2 − t)−1/2
dt.

(A.3)

By exploiting the Taylor series expansion of et/(2λ2), (A.3) can
be expressed as

Pe = α

2
− α

√
2

4
√
πλ

e(2−μ2)/(2λ2)
+∞
∑

k=0

1
k!

(

1
2λ2

)
k

×
∫ μ2

0
e−μ

2/(λ2t)tk
(

μ2 − t)−1/2
dt.

(A.4)

The integral in (A.4) is in the same form of the integral of
Equation 3.471.2 in [17], hence we obtain

Pe = α

2
− α

√
2

4
μ

λ
e(1−μ2)/(2λ2)

+∞
∑

k=0

1
k!

(

μ2

2λ3

)k

×W−(k+1)/2,(k+1)/2
(

λ−2),

(A.5)

where Wa,b(·) is the Whittaker W-function of order a, b [17,
22]. By means of Equation 13.1.33 in [22], (A.5) can also be
expressed in terms of the Tricomi U-function, as expressed
by

Pe = α

2
− α
√

2
4

μ

λ3
e−μ

2/(2λ2)
+∞
∑

k=0

1
k!

(

μ2

2λ4

)k

U
(

k +
3
2

, k + 2, λ−2
)

,

(A.6)

and, using Equation 13.1.10 in [22], in terms of the
generalized hypergeometric function pFq(·) with p = 2 and
q = 0, as expressed by

Pe = α

2
− α

√
2

4
μe−μ

2/(2λ2)
+∞
∑

k=0

1
k!

(

μ2

2λ2

)k

2F0

(

k +
3
2

,
1
2

; ;−λ2
)

,

(A.7)

which is the same of (9).

B. Alternative Expressions

In (9), or equivalently in (A.7), the symbol-error prob-
ability is expressed as a series expansion of generalized
hypergeometric functions. However, there exist also other
symbol-error probability expressions that are equivalent to
(A.7). For instance, (A.5) and (A.6) are also expressed as
a series expansion of hypergeometric functions, that is,
the Whittaker W-function and the Tricomi U-function.
In addition, since the generalized hypergeometric function
pFq(·) can be defined by its corresponding series expansion
(10), the symbol-error probability (A.7) can be equivalently
expressed by a double series as

Pe = α

2
− α

√
2

4
μe−μ

2/(2λ2)
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∑

k=0
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∑

l=0
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)k
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(B.1)

Besides, the double series (B.1) can be expressed in terms
of a unique generalized hypergeometric function, using the
Kampé de Fériet’s double hypergeometric function F

p:r;u
q:s;v [·]

[39], as expressed by

Pe = α
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[
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=
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