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ABSTRACT 

 
OFDM systems affected by severe time-varying channels greatly 
benefit from equalization schemes based on intercarrier interfer-
ence (ICI) mitigation, which guarantee improved performance with 
respect to conventional one-tap equalizers. By exploiting a semi-
analytical approach, this paper assesses the BER performance of 
the so-called banded equalizers, i.e., those equalizers that take into 
account only the ICI produced by the closest subcarriers. Specifi-
cally, by exploiting the Gaussian approximation of the residual ICI 
at the equalizer output, we evaluate the BER of block linear equal-
izers designed under a minimum mean-squared error (MMSE) 
criterion. Simulation results show a very good agreement with the 
theoretical analysis. In addition, we derive a lower bound and an 
approximate upper bound for the BER of block decision-feedback 
equalizers. 
 

Index Terms— Performance analysis, OFDM, time-varying 
channels 
 

1. INTRODUCTION 
 
A key feature of multicarrier systems with cyclic prefix (CP), such 
as OFDM, is the capability of converting a time-invariant (TI) 
frequency-selective channel in a set of parallel orthogonal fre-
quency-flat channels. However, in time-varying (TV) channels, 
such as those experienced in high-mobility communications, the 
orthogonality among the OFDM subcarriers is destroyed, due to 
the intercarrier interference (ICI) generated by the channel Doppler 
spread [1]-[3]. If left uncompensated, the ICI highly degrades the 
BER performance of OFDM, as testified by [4] and [5], which 
analyze the BER of the conventional one-tap OFDM equalizer. 

To mitigate the ICI effects, different equalization schemes 
have been proposed (see [6]-[8], and the references therein). These 
schemes, though more complex than one-tap equalization, are quite 
effective in reducing the BER floor caused by the ICI, and there-
fore are suitable for high-mobility communications. However, for 
these equalizers, a theoretical BER characterization is still lacking, 
and the BER in [6]-[8] is illustrated by means of simulation results, 
which are usually time-consuming and valid only for some specific 
scenarios. 

Thus, in this paper, we focus on the analytical BER perform-
ance of the so-called banded equalizers presented in [8]. The spe-
cific feature of the banded equalizers is that they try to combat 
only the ICI that comes from adjacent subcarriers. This is moti-
vated by the fact that most of the ICI is generated by few closest 

subcarriers [7]. Since the ICI produced by the faraway subcarriers 
is ignored, the frequency-domain channel matrix becomes banded. 
Relying on this matrix structure, many equalization algorithms can 
be exploited to reduce complexity [7][8]. Specifically, the algo-
rithms in [8], which exploit a band LDL decomposition, have a 
computational complexity that is only linear in the number of sub-
carriers, differently from other more complex alternatives [6][7]. 

In order to derive the BER performance of the MMSE linear 
equalizer (LE) presented in [8], we adopt a semi-analytical ap-
proach. First, we make use of the Gaussian approximation of the 
ICI, already exploited in [4], to express the BER conditioned on a 
given channel realization. Second, we average the obtained results 
over a certain number of typical computer-generated channel reali-
zations. This procedure is the main difference with the fully-
analytical methods, where the average is performed by mathemati-
cal integration over the channel statistics. Although closed-form 
analytical BER expressions are generally attractive, they exist or 
are possible to derive for specific constellations and channel statis-
tics (e.g., Rayleigh, Rice, etc.). On the contrary, one of the merits 
of semi-analytical approaches is their generality, because any con-
stellation format and channel statistics can be assumed. On the 
other hand, semi-analytical methods are by far faster than the com-
plete system simulation. 

We also consider the BER performance of banded decision-
feedback equalizers (DFE) [8], which are known to suffer from 
error propagation. Since the number of error events can be quite 
large, for DFE even an approximate BER analysis is prohibitive 
[9]. In this paper, we derive both a lower bound and an approxi-
mate upper bound. The lower bound is obtained by disregarding 
the presence of error propagation, while the approximate upper 
bound is obtained by following the approach of [10]. To this end, 
we still use the semi-analytical method previously described. 
Simulation results show that both the bounds correctly follow the 
exact BER performance. 
 

2. BANDED EQUALIZATION FOR OFDM 
 
We consider an OFDM system with N  subcarriers. We assume 
time and frequency synchronization, and a CP length L  greater 
than the maximum delay spread of the channel. We assume that the 
receiver can apply an 1N ×  time-domain window w , after the CP 
removal and before the FFT, in order to reduce the Doppler spread-
ing. At the receiver, after the FFT, the generic received OFDM 
block can be expressed by [8] 
 W W W W W= + = +z Λ a n C Λa n , (1) 

where Wz  is the 1N ×  frequency-domain received vector, 
W W

H=Λ F∆ HF  is the N N×  frequency-domain channel matrix, 
which includes the presence of windowing by the N N×  diagonal 
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matrix W diag( )=∆ w , H  is the N N×  time-domain channel ma-
trix, F  is the N N×  unitary DFT matrix, a  is the 1N ×  OFDM 
block that contains the frequency-domain data, W W=n F∆ v  is the 
noise vector in the frequency domain, with v  the receiver AWGN 
vector in the time domain before windowing, with covariance 

2
v Nσ I . In (1), we also define H=Λ FHF , which is the frequency-

domain channel matrix in the absence of windowing, and 
W W

H=C F∆ F , which is the circulant matrix representing the win-
dowing operation in the frequency domain. These definitions rep-
resent a clear link with conventional OFDM, where windowing is 
absent. In this case, W N=∆ I  and hence W N=C I . 

By assuming that AN  out of N  subcarriers are active, the 
1N ×  transmitted vector a  can be rewritten as 

 
    V VGB / 2 1 / 2 1[   ]T T T T

N N× ×= =a T a 0 a 0 , (2) 
where 

    V A A V AGB / 2 / 2[   ]T T T
N N N N N× ×=T 0 I 0  is the AN N×  matrix that 

inserts the VN  frequency guard bands, with V AN N N= − , and a  
is the A 1N ×  QPSK data vector with covariance 

A

2
a Nσ I . At the 

receiver side, we assume that the data received on the guard bands 
are discarded, as expressed by 
 W GB W W W= = +z R z Λ a n , (3) 
where GB GB

T=R T  selects only the AN  middle subcarriers, 
W GB W GB=Λ R Λ T  is A AN N× , and W GB W=n R n  is A 1N × . 

Due to the time variation of the channel, the frequency-
domain channel matrix WΛ  in (1) (or equivalently its A AN N×  
middle block WΛ  in (3)) is not diagonal, but nearly banded [7], 
and each diagonal is associated with a discrete Doppler frequency 
that introduces ICI. Banded equalizers exploit this Doppler struc-
ture by approximating the channel matrix WΛ  with its banded 
version WB  (or equivalently WΛ  with WB ), neglecting the ICI 
that comes from faraway subcarriers. We denote with Q  the num-
ber of the relevant subcarriers from each side. The total bandwidth 
of WB  is hence 2 1Q + . If windowing is adopted, the receiver 
window can be designed to strengthen the banded assumption. This 
leads to the minimum band approximation error (MBAE) design of 
[8], where the window design minimizes the quantity 

2
W W{|| || }E −Λ B  by exploiting the knowledge of the maximum 

Doppler frequency Df  and of the Doppler spectrum. 
In the next section, we illustrate how to evaluate the BER per-

formance of banded linear equalizers designed under the MMSE 
criterion. For an LE, the soft version of the data vector can be re-
covered by a matrix multiplication, expressed by 
 LE W=a Gz . (4) 
In case of windowing, the banded MMSE LE is expressed by [8] 
 1 1

W-LE W W W GB W W GB( )H H H Tγ − −= +G B B B R C C R , (5) 
where 2 2/a vγ σ σ=  represents the signal-to-noise (SNR) ratio. 
When windowing is absent, equation (5) reduces to 
 

A

1 1
LE ( )H H

Nγ − −= +G B BB I , (6) 

where B  denotes the banded version of the A AN N×  unwindowed 
channel matrix GB GB=Λ R ΛT . 
 

3. BER OF BANDED LINEAR EQUALIZERS 
 
To derive the BER performance, we follow a semi-analytical ap-
proach that consists in two steps. First, assuming a given channel 
realization, we analytically derive the BER conditioned on that 
channel realization. Second, we average the conditional BER over 
the channel statistics. In both steps we will adopt some convenient 

approximations that permit to simplify the BER analysis. As a 
consequence of these approximations, the obtained BER is not 
truly exact. However, we will use computer simulations to estab-
lish the accuracy of the proposed approach. Although we focus on 
the performance of QPSK, the proposed semi-analytical method 
can be employed also for other symbol constellations. 

For simplicity, let us consider the case when receiver win-
dowing is not used. (Similar considerations holds for the window-
ing case.) By combining (4), (6), and (3), we obtain 
 

A

1 1
LE ( ) ( )H H

Nγ − −= + +a B BB I Λa n , (7) 

where GB GB
H=Λ R FHF T  and GB=n R Fv  are the unwindowed 

versions of WΛ  and Wn , respectively. Since B  is the banded 
version of Λ , we rewrite = +Λ B E . It is clear that the matrix E , 
which represents the ICI coming from the faraway subcarriers, has 
nonzero elements only outside its main band that contains 2 1Q +  
diagonals. Since E  generates an ICI that is left uncompensated by 
the equalizer, its effect should be considered as an additional 
source of error, as it happens for the noise. By inserting = +Λ B E  
in (7), we obtain 
 

A

1 1
LE LE( )H H

Nγ − −= + +a B BB I Ba G u , (8) 
where = +u Ea n  represents the aggregate noise due to both the 
neglected ICI and the thermal AWGN. In (8), we observe that the 
matrix 

A A

1 1 1 1( ) ( )H H H H
N Nγ γ− − − −+ = +B BB I B B B I B B  is not di-

agonal. This is a direct consequence of the MMSE criterion, which 
does not suppress the ICI completely, but allows some residual ICI 
in order to avoid excessive noise enhancement. Therefore, we de-
fine the matrix D  as the diagonal matrix obtained by selecting the 
main diagonal of 

A

1 1( )H H
Nγ − −+B BB I B , and the matrix 

 
A

1 1( )H H
Nγ − −= + −Ω B BB I B D . (9) 

By (9), Equation (8) becomes 
 LE LE= + +a Da Ωa G u , (10) 
where Da  is the useful term, Ωa  represents the residual ICI, and 

BLEG u  stands for the aggregate noise. Focusing on the kth subcar-
rier, the decision variable can be expressed by 

 
A A

LE , , ,
, 1 1

[ ]
N N

k k k k k k l l k l l
l k l l

a d a a g uω
≠ = =

= = + +∑ ∑a , (11) 

where la  is the lth element of the vector a , ,k lω  is the (k,l)-th 
element of Ω , and the other quantities are defined accordingly. 

To obtain the conditional BER, the key idea is to approximate 
as Gaussian the undesired terms in (11). Indeed, the first summa-
tion in (11), expressed by 
 

A

,
, 1

N

k k l l
l k l

aβ ω
≠ =

= ∑ , (12) 

is the weighted sum of A 1N −  independent and equiprobable ran-
dom variables { }la . Since in OFDM systems the number of active 
subcarriers is quite large (usually A 10N ), the hypotheses of the 
central limit theorem (CLT) [11] are satisfied, and therefore kβ  in 
(12) can be safely considered as a zero-mean complex circular 
Gaussian random variable, with variance equal to 

 
A

2 2 2
,

, 1

| |
k

N

a k l
l k l

βσ σ ω
≠ =

= ∑ . (13) 

A more complete theoretical justification of this Gaussian ap-
proximation can be found, in the context of MMSE multiuser de-
tection, in [12]. 

To statistically characterize the second summation in (11), we 
observe that lu  in (11), expressed by 



 

 

 
A

,
| | , 1

N

l l k l l
k l Q l

u n e a
− > =

= + ∑ , (14) 

is obtained by adding to the Gaussian random variable ln  the 
weighted sum of A 2 1N Q− −  independent and equiprobable ran-
dom variables { }la . Practical values of Q  are very small [8], and 
therefore, similarly to the previous case, the number of summed 
elements is quite large, and we can apply the CLT to approximate 
the summation in (14) as Gaussian. Consequently, lu  can be ap-
proximated as Gaussian as well, being the sum of two Gaussian 
random variables. More precisely, we approximate the whole vec-
tor = +u Ea n  as a complex jointly Gaussian random vector with 
zero mean and covariance matrix uuC  expressed by 
 

A

2 2H
a n Nσ σ= +uuC EE I . (15) 

Since the aggregate noise in (11), expressed by 

 
A

,
1

N

k k l l
l

g uθ
=

=∑ , (16) 

is a linear combination of random variables that are approximately 
jointly Gaussian, kθ  can be even better approximated as complex 
Gaussian. Its variance 2

kθσ  is calculated as the (k,k)-th element of 
the matrix LE LE

H
uuG C G , which by (15) can be expressed as 

 2 2 2
LE LE , LE LE ,[ ] [ ]

k

H H H
a k k n k kθσ σ σ= +G EE G G G . (17) 

Taking into account that kβ  and kθ  are approximately Gaus-
sian, and assuming QPSK with Gray coding, the BER on the kth 
subcarrier conditioned on a given channel realization Λ  can be 
obtained as [13] 

 
2 2

,
LE 2 2

| |
( , )

k k

k k ad
BER k Q

β θ

σ
σ σ

 
 =
 + 

Λ , (18) 

where 2
kβσ  and 2

kθσ  are expressed by (13) and (17), respectively. 
The final BER is then obtained as the average of (18) over the 
channel statistics and over the subcarrier index, as expressed by 

 
A

LE LE
1A

1 ( , ) ( )
N

k

BER BER k f d
N =

= ∑∫ ΛΛ Λ Λ , (19) 

where ( )fΛ Λ  is the probability density function of the channel 
realization Λ . The analytical solution of the integral in (19) seems 
quite difficult, even for specific channel statistics (such as 
Rayleigh fading with Jakes’ Doppler spectrum). Therefore, we 
approximate the integral in (19) by averaging (18) over a finite 
number H  of computer-generated channel realizations ( ){ }jΛ , as 

 
A

( )
LE LE

1 1A

1 ( , )
N H

j

k j

BER BER k
N H = =

= ∑∑ Λ . (20) 

Although this semi-analytical approach does not give a closed-
form solution, it can be adopted with a large variety of channel 
statistics. In addition, the simulation results presented in Sect. 5 
show that a relatively-small number of channel realizations, e.g. 

1000H = , produces a very good approximation. 
We point out that the proposed method can be used also to 

evaluate the BER of other linear equalizers. For example, the linear 
MMSE equalizer presented in [6], which considers all the ICI, can 
be obtained by selecting AQ N= . In this case, since =E 0 , the 
term kθ  in (16) vanishes. As a second example, a very-low-
complexity MMSE LE can be obtained by selecting 0Q = , which 
renders the equalizer G  in (6) diagonal. For QPSK and other con-
stant-modulus constellations, this equalizer is equivalent to the 
conventional one-tap equalizer (up to a real subcarrier-dependent 
scaling factor that does not affect BER performance). 

4. BER BOUNDS FOR BANDED DFE 
 
In this section, we investigate on the BER of banded DFE designed 
following the MMSE criterion. The DFE use two filters: a feed-
forward filter FF , and a feedback filter BF . The soft-detected data 
is expressed by  
 DFE F W B DFEˆ= −a F z F a , (21) 

where DFEâ  is the hard-detected data vector. Hence, the feedback 
filter BF  cancels out the ICI generated from the already-detected 
data, whereas the feedforward filter FF  suppresses the ICI coming 
from the not-yet-detected data. For banded MMSE DFE [8], 
 

AB
H

N= −F L I ,               F LE
H=F L G , (22) 

where L  is a band lower triangular matrix obtained from band 
LDL decomposition of 

A

1 H
Nγ −= +M I B B , as expressed by 

H=M LDL . (In case of windowing, W-LEG  of (5) and the LDL of 
A

1
W GB GB

T H
Nγ −= +M I T B BT  are used.)  

Since DFE make use of past decisions cancellation, they suf-
fer from error propagation. Therefore, an exact BER analysis is 
rather cumbersome, since should take into account all the possible 
error events. For banded DFE with QPSK, since L  is banded with 
upper band equal to 2Q , the number of possible error events is 

29 Q  [9], which is tractable only for 1Q = . Although we are cur-
rently looking for convenient approximations of the exact BER, for 
simplicity, we present herein some simple bounds that could be 
useful to predict the BER behavior. We describe these bounds for 
the unwindowed case (the windowed case is analogous). 
 
4.1. Lower Bound 
 

A simple BER lower bound can be obtained by assuming 
DFEˆ =a a  in (21), i.e., we neglect the error propagation. In this 

case, from  (3), (21)-(22), we obtain 
 

ADFE LE LE( )H H H
N= − + +a L G Λ L I a L G n , (23) 

which, by splitting = +Λ B E , and using = +u Ea n , becomes  
 DFE DFE DFE LE

H= + +a D a Ω a L G u , (24) 
where DFED  is the diagonal matrix obtained by selecting the main 
diagonal of the matrix 

ALE
H H

N− +L G B L I , and 
ADFE LE DFE

H H
N= − + −Ω L G B L I D . It is clear that (24) is the DFE 

counterpart of (10). Similarly to the BER of the LE, we can apply 
the Gaussian approximation to the interference terms DFEΩ a  and 

LE
HL G u . By omitting a detailed derivation, which is similar to 

that in Sect. 3, we obtain the lower bound on the BER for subcar-
rier k as 

 
2 2

DFE, ,(LB)
DFE 2 2

DFE, DFE,

| |
( , )

k k

k k ad
BER k Q

β θ

σ
σ σ

 
 =
 + 

Λ , (25) 

where DFE, ,k kd  is the (k,k)-th element of the matrix DFED , and 

 
A

2 2 2
DFE, DFE, ,

, 1

| |
k

N

a k l
l k l

βσ σ ω
≠ =

= ∑ , (26) 

 2 2 2
DFE, LE LE , LE LE ,[ ] [ ]

k

H H H H H
a k k n k kθσ σ σ= +L G EE G L L G G L . (27) 

The final lower bound can then be obtained as in (20) by 

 
A

(LB) (LB) ( )
DFE DFE

1 1A

1 ( , )
N H

j

k j

BER BER k
N H = =

= ∑∑ Λ . (28) 

 



 

 

4.2. Approximate Upper Bound 
 

To derive the BER upper bound, we consider the error propa-
gation following the approach of [10]. For each subcarrier k , 
since the data are detected sequentially from Ak N=  to 1k = , only 

AkM N k= −  previously-detected symbols can propagate one or 
more possible errors. Hence, for each subcarrier k , we introduce 

1kM +  states, identified by mφ , with 0 km M≤ ≤ . We say that the 
state of subcarrier k  is mφ  when the closest error has happened on 
subcarrier 1k m+ + . In other words, the state is mφ  when all the 
previous symbols from 1k +  to k m+  are detected correctly, 
while the symbol 1k m+ +  is incorrect. Specifically, the state 0φ  
identifies a symbol error on the previously-detected subcarrier 
(with index 1k + ), while the state 

kMφ  represents the absence of 
errors on all the previously-detected symbols. We also define the 
quantity ,k mp  as the probability that the state of subcarrier k  is 

mφ , and the conditional probability of correct decision as 
 , ˆPr{ | }k m k k ma aα φ= = . (29) 
These quantities allow a complete description of the state-
transition diagram. Specifically, for 0 km M≤ < , the system can 
evolve from the state mφ  only towards two states: either 1mφ +  (with 
probability ,k mα ) or 0φ  (with probability ,1 k mα− ). The state-
transition equations can be expressed by 

                     1,0 , ,
0

(1 )
kM

k k m k m
m

p pα−
=

= −∑ , (30) 

 1, , 1 , 1k m k m k mp pα− − −= ,        1 1km M≤ ≤ − , (31) 
                   1, , 1 , 1 , ,k k k k kk M k M k M k M k Mp p pα α− − −= + . (32) 
Due to the channel correlation in the frequency domain, we expect 
that the conditional symbol error rate (SER) on two adjacent sub-
carriers is roughly equal. Therefore, by recalling that 0φ  identifies 
a symbol error on the previously-detected subcarrier, we can write 

 DFE 1,0 DFE ,0( , ) ( 1, )k kSER k p SER k p−= ≈ + =Λ Λ . (33) 
By the same reason, we impose the stationary approximation 

1, ,k m k mp p− ≈  also for 0m ≠ . It is obvious that this assumption can 
not be strictly true, since the number of states depends on k . 
However, by this approximation, we are able to apply (30)-(32) 
recursively, in order to explicit the conditional SER as [10] 

 
1

12

DFE , ,
0 0 0,

1( , ) 1
1

kk

k

MM i

k m k m
i m mk M

SER k α α
α

−
−−

= = =

 
= + +  − 

∑ ∏ ∏Λ . (34) 

At this point, a SER upper bound can be simply obtained by fixing 
some specific values ,k mα , with , ,k m k mα α≤ , thereby increasing 
the conditional SER. Since we are dealing with Gray coding, we 
can neglect the possibility that a symbol error will produce more 
than one bit error. This is equivalent of assuming that only three 
symbols out of four are possible. Hence, we can select 

 , 1/ 3k mα = ,       0 2 1m Q≤ ≤ − . (35) 

In addition, for the banded DFE, the error propagation is limited to 
2Q  symbols, and hence we can write 

 (LB)
, , DFE1 ( , )k m k m SER kα α= = − Λ ,       2 kQ m M≤ ≤ , (36) 

where (LB)
DFE ( , )SER k Λ  is the SER in the absence of error propaga-

tion, which can be calculated from (25) as 

 ( )2(LB) (LB) (LB)
DFE DFE DFE( , ) 2 ( , ) ( , )SER k BER k BER k= −Λ Λ Λ . (37) 

From (34), by using (35) and (36), we can obtain 

2 (LB)
( UB) DFE
DFE DFE2 (LB)

DFE

2 3 ( , )( , ) ( , )
3 (3 1) ( , ) 2

Q

Q

SER kSER k SER k
SER k

⋅= ≥
⋅ − +

ΛΛ Λ
Λ

. (38) 

This explains that, for low SER values, the SER is at maximum 
23 Q  times higher than the SER in the absence of error propagation. 

Although we are interested in very small values of Q , such as 
1Q =  and 2Q = , this upper bound seems too loose for our pur-

poses. Indeed, in OFDM systems, the ICI coefficients are very 
small. This translates into a feedback filter with very small coeffi-
cients with respect to the dominant one, which represents the can-
cellation of the adjacent symbol. As a consequence, we re-derive 
the upper bound by imposing (36) also for 1 2 1m Q≤ ≤ − , while 
maintaining ,0 1/ 3kα = . In this case, the approximate upper bound 
becomes 
 

(LB)
(AUB) DFE
DFE (LB)

DFE

3 ( , )( , )
3 ( , ) 1

SER kSER k
SER k

=
+

ΛΛ
Λ

. (39) 

The final upper bound can then be obtained as in (20) and (28) by 

 
A

(AUB) (AUB) ( )
DFE DFE

1 1A

1 ( , )
2

N H
j

k j

BER SER k
N H = =

= ∑∑ Λ , (40) 

where the factor 2 takes into account that, for QPSK with Gray 
coding, a symbol error generally translates into a single bit error. 
 

5. SIMULATION RESULTS 
 
We consider an OFDM system with 128N = , A 96N = , CP 
length 8L = , and QPSK with Gray coding. The channel model is 
characterized by Rayleigh fading, an exponential power-delay 
profile with root-mean-square delay spread 3σ =  (normalized to 
the sampling period), truncated up to the CP length, and a Jakes’ 
Doppler spectrum. In case of windowing, we adopted the MBAE-
SOE window design of [8]. All the theoretical results have been 
obtained by averaging over 1000H =  channel realizations. 

We firstly compare the analytical and the simulated BER of 
the linear equalizers. Fig. 1 illustrates the BER of the MMSE LE as 
a function of the SNR per bit / 2γ , when the normalized Doppler 
spread is D / 0.15ff ∆ = , i.e., 15% of the subcarrier separation. It is 
evident that the theoretical BER coincides with the simulated one 
both in the presence or absence of windowing. Our semi-analytical 
approach is able to correctly predict also the BER of one-tap 
equalization, which is the conventional equalization scheme tai-
lored to time-invariant channels. This agrees with the result in [4]. 
The proposed approach is useful also to characterize the BER per-
formance of the full (i.e., non-banded) MMSE LE of [6]. Fig. 2 
investigates the BER floors of linear equalizers, as a function of 
the normalized Doppler spread. The SNR per bit is fixed and equal 
to 40 dB. Also in this case the theoretical BER closely fits with the 
simulated one. 

We now compare the simulated BER of the DFE with the 
theoretical BER bounds, i.e., the lower bound (LB) of (28) and the 
approximate upper bound (AUB) of (40). Figs. 3-4 show that the 
two bounds correctly follow the BER shape. Unfortunately, they 
are not very tight. This means that other refined approximations 
can potentially tighten the two bounds. A second possibility is to 
develop a BER analysis using the approach of [9]. We are cur-
rently working on both the alternatives. 
 

6. CONCLUSIONS 
 
We have described a semi-analytical method that predicts the BER 
of a banded MMSE LE in OFDM systems with significant Doppler 



 

 

spread. The comparison with simulation results has shown that the 
proposed approach is quite accurate and can be adopted also for 
other (non-banded) detectors. In addition, we have presented a 
lower bound and an approximate upper bound on the performance 
of banded MMSE DFE. Future work could improve the DFE error 
propagation model, and incorporate the effect of channel coding on 
the BER performance. 
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Fig. 1. BER of linear equalizers ( D / 0.15ff ∆ = ). 
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Fig. 2. BER of linear equalizers ( / 2 40γ =  dB). 
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Fig. 3. BER of decision-feedback equalizers. 

 

5 10 15 20 25 30 35
10

-4

10
-3

10
-2

10
-1

10
0

SNR per bit (dB)

B
E

R

Full, Q = N (LB)
Banded, Q = 2 (LB)
Banded + window, Q = 2 (LB)
Full, Q = N (AUB)
Banded, Q = 2 (AUB)
Banded + window, Q = 2 (AUB)
Full, Q = N (sim.)
Banded, Q = 2 (sim.)
Banded + window, Q = 2 (sim.)

 
Fig. 4. BER of decision-feedback equalizers. 
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