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Abstract—The aim of this paper is to propose a least mean
squares (LMS) strategy for adaptive estimation of signals defined
over graphs. Assuming the graph signal to be band-limited, over a
known bandwidth, the method enables reconstruction, with guar-
anteed performance in terms of mean-square error, and tracking
from a limited number of observations over a subset of vertices.
A detailed mean square analysis provides the performance of
the proposed method, and leads to several insights for designing
useful sampling strategies for graph signals. Numerical results
validate our theoretical findings, and illustrate the performance of
the proposed method. Furthermore, to cope with the case where
the bandwidth is not known beforehand, we propose a method
that performs a sparse online estimation of the signal support in
the (graph) frequency domain, which enables online adaptation
of the graph sampling strategy. Finally, we apply the proposed
method to build the power spatial density cartography of a given
operational region in a cognitive network environment.

Index Terms—Cognitive networks, graph signal processing, least
mean squares estimation, sampling on graphs.

I. INTRODUCTION

N MANY applications of current interest like social net-
I works, vehicular networks, big data or biological networks,
the observed signals lie over the vertices of a graph [1]. This has
motivated the development of tools for analyzing signals defined
over a graph, or graph signals for short [1]-[3]. Graph signal pro-
cessing (GSP) aims at extending classical discrete-time signal
processing tools to signals defined over a discrete domain whose
elementary units (vertices) are related to each other through a
graph. This framework subsumes as a very simple special case
discrete-time signal processing, where the vertices are associ-
ated to time instants and edges link consecutive time instants.
A peculiar aspect of GSP is that, since the signal domain is dic-
tated by the graph topology, the analysis tools come to depend
on the graph topology as well. This paves the way to a plethora
of methods, each emphasizing different aspects of the problem.
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An important feature to have in mind about graph signals is that
the signal domain is not a metric space, as in the case, for ex-
ample, of biological networks, where the vertices may be genes,
proteins, enzymes, etc, and the presence of an edge between
two molecules means that those molecules undergo a chemi-
cal reaction. This marks a fundamental difference with respect
to time signals where the time domain is inherently a metric
space. Processing signals defined over a graph has been consid-
ered in [2], [4]-[6]. A central role in GSP is of course played
by spectral analysis of graph signals, which passes through the
introduction of the so called Graph Fourier Transform (GFT).
Alternative definitions of GFT have been proposed, depend-
ing on the different perspectives used to extend classical tools
[11, [2], [7]-[9]. Two basic approaches are available, proposing
the projection of the graph signal onto the eigenvectors of either
the graph Laplacian, see, e.g., [1], [7], [9] or of the adjacency
matrix, see, e.g. [2], [10]. The first approach applies to undi-
rected graphs and builds on the spectral clustering properties of
the Laplacian eigenvectors and the minimization of the ¢, norm
graph total variation; the second approach was proposed to han-
dle also directed graphs and it is based on the interpretation of
the adjacency operator as the graph shift operator, which lies at
the heart of all linear shift-invariant filtering methods for graph
signals [11], [12]. A further very recent contribution proposes
to build the graph Forier basis as the set of orthonormal signals
that minimize the (directed) graph cut size [13].

After the introduction of the GFT, an uncertainty principle
for graph signals was derived in [14]-[18]. with the aim of
assessing the link between the spread of a signal on the vertices
of the graph and on its dual domain, as defined by the GFT.
A simple closed form expressions for the fundamental tradeoff
between the concentrations of a signal in the graph and the
transformed domains was given in [18].

One of the basic problems in GSP is the development of a
graph sampling theory, whose aim is to recover a band-limited
(or approximately band-limited) graph signal from a subset of its
samples. A seminal contribution was given in [7], later extended
in [19] and, very recently, in [10], [18], [20]-[22]. Dealing with
graph signals, the recovery problem may easily become ill-
conditioned, depending on the location of the samples. Hence,
for any given number of samples enabling signal recovery, the
identification of the sampling set plays a key role in the condi-
tioning of the recovery problem. It is then particularly important
to devise strategies to optimize the selection of the sampling set.
Alternative signal reconstuction methods have been proposed,
either iterative as in [20], [23], [24], or single shot, as in [10],
[18]. Frame-based approaches to reconstruct signals from sub-
sets of samples have been proposed in [7], [18], [20].
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The theory developed in the last years for GSP was then ap-
plied to solve specific learning tasks, such as semi-supervised
classification on graphs [25]-[27], graph dictionary learning
[28], [29], learning graphs structures [30], smooth graph signal
recovery from random samples [31], [32], inpainting [33], de-
noising [34], and community detection on graphs [35]. Finally,
in [36], [37], the authors proposed signal recovery methods
aimed to recover graph signals that are assumed to be smooth
with respect to the underlying graph, from sampled, noisy, miss-
ing, or corrupted measurements.

Contribution: The goal of this paper is to propose LMS strate-
gies for adaptive estimation of signals defined on graphs. To the
best of our knowledge, this is the first attempt to merge the
well established theory of adaptive filtering [38], [39], with the
emerging field of signal processing on graphs. The proposed
method hinges on the graph structure describing the observed
signal and, under a band-limited assumption, it enables online
reconstruction and tracking from a limited number of observa-
tions taken over a subset of vertices. An interesting feature of our
proposed strategy is that this subset is allowed to vary over time,
in adaptive manner. A detailed mean square analysis illustrates
the role of the sampling strategy on the reconstruction capability,
stability, and mean-square performance of the proposed algo-
rithm. Based on these results, we also derive adaptive sampling
strategies for LMS estimation of graph signals. Several numeri-
cal results confirm the theoretical findings, and assess the perfor-
mance of the proposed strategies. Furthermore, we consider the
case where the graph signal is band-limited but the bandwidth is
not known beforehand; this case is critical because the selection
of the sampling strategy fundamentally depends on such prior
information. To cope with this issue, we propose an LMS method
with adaptive sampling, which estimates and tracks the signal
support in the (graph) frequency domain, while at the same time
adapting the graph sampling strategy. Numerical results illus-
trate the tracking capability of the aforementioned method in
the presence of time-varying graph signals. As an example, we
apply the proposed strategy to estimate and track the spatial
distribution of the electromagnetic power in a cognitive radio
framework. The resulting graph signal turns out to be smooth,
i.e. the largest part of its energy is concentrated at low frequen-
cies, but it is not perfectly band-limited. As a consequence, re-
covering the overall signal from a subset of samples is inevitably
affected by aliasing [22]. Numerical results show the tradeoff
between complexity, i.e. number of samples used for processing,
and mean-square performance of the proposed strategy, when
applied to such cartography task. Intuitively, processing with a
larger bandwidth and a (consequent) larger number of samples,
improves the performance of the algorithm, at the price of a
larger complexity.

The paper is organized as follows. In Section II, we intro-
duce some basic graph signal processing tools, which will be
useful for the following derivations. Section III introduces the
proposed LMS algorithm for graph signals, illustrates its mean-
square analysis, and derives useful graph sampling strategies.
Then, in Section IV we illustrate the proposed LMS strategy
with adaptive sampling, while Section V considers the appli-
cation to power density cartography. Finally, Section VI draws
some conclusions.

II. GRAPH SIGNAL PROCESSING TOOLS

We consider a graph G = (V, ) consisting of a set of N
nodes V = {1,2,..., N}, along with a set of weighted edges
€ ={a;j }ijev, such that a;; > 0, if there is a link from node
Jj to node ¢, or a;; = 0, otherwise. The adjacency matrix A of
a graph is the collection of all the weights a;;,7,j =1,..., N.
The degree of node i is k; := Z;V:l a;;. The degree matrix K is
a diagonal matrix having the node degrees on its diagonal. The
Laplacian matrix is defined as:

L=K-A. (D

If the graph is undirected, the Laplacian matrix is symmetric
and positive semi-definite, and admits the eigendecomposition
L = UAUY, where U collects all the eigenvectors of L in
its columns, whereas A is a diagonal matrix containing the
eigenvalues of L. It is well known from spectral graph theory
[40] that the eigenvectors of L are well suited for representing
clusters, since they minimize the ¢, norm graph total variation.

A signal x over a graph G is defined as a mapping from
the vertex set to the set of complex numbers, i.e.x : V — C. In
many applications, the signal  admits a compact representation,
i.e., it can be expressed as:

x =Us 2)

where s is exactly (or approximately) sparse. As an example,
in all cases where the graph signal exhibits clustering features,
i.e. it is a smooth function within each cluster, but it is allowed
to vary arbitrarily from one cluster to the other, the representa-
tion in (2) is compact, i.e. the only nonzero (or approximately
nonzero) entries of s are the ones associated to the clusters.

The GFT s of a signal « is defined as the projection onto the
orthogonal set of vectors {u; };—1. . v [1], i.e.

GFT: s=U"g. (3)

The GFT has been defined in alternative ways, see, e.g.,
[11, [2], [9], [10]. In this paper, we basically follow the ap-
proach based on the Laplacian matrix, assuming an undirected
graph structure, but the theory could be extended to handle di-
rected graphs with minor modifications. We denote the support
of sin (Q)as F={ie{l,...,N}:s; #0}, and the band-
width of the graph signal x is defined as the cardinality of F,
i.e. |F|. Clearly, combining (2) with (3), if the signal « exhibits
a clustering behavior, in the sense specified above, computing
its GFT is the way to recover the sparse vector s in (2).

Localization Operators: Given a subset of vertices S C V),
we define a vertex-limiting operator as the diagonal matrix

DS = diag{lg}, (4)

where 1g is the set indicator vector, whose ¢-th entry is equal
to one, if 7 € S, or zero otherwise. Similarly, given a subset of
frequency indices F C V), we introduce the filtering operator

Br = UX;UY, S)

where X7 is a diagonal matrix defined as 3z = diag{1r}.
It is immediate to check that both matrices Dg and Br are
self-adjoint and idempotent, and so they represent orthogonal
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projectors. The space of all signals whose GFT is exactly sup-
ported on the set F is known as the Paley-Wiener space for the
set F [7]. We denote by Bx C Lo (G) the set of all finite ¢5-norm
signals belonging to the Paley-Wiener space associated to the
frequency subset F. Similarly, we denote by Ds C Lo(G) the
set of all finite /5-norm signals with support on the vertex subset
S. In the rest of the paper, whenever there will be no ambiguities
we will drop the subscripts referring to the sets. Finally, given a
set S, we denote its complement set as S,suchthatV =SUS
and S NS = (). Similarly, we define the complement set of F
as F. Thus, we define the vertex-projector onto S as D and,
similarly, the frequency projector onto the frequency domain F
as B.

Exploiting the localization operators in (4) and (5), we say
that a vector x is perfectly localized over the subset S C V if

Dz =z, (6)

with D defined as in (4). Similarly, a vector x is perfectly
localized over the frequency set F (i.e. band-limited on F) if

Bx =, (7

with B given in (5). The localization properties of graph signals
were studied in [22] and later extended in [18] to derive the
fundamental trade-off between the localization of a signal in the
graph and on its dual domain. An interesting consequence of
that theory is that, differently from continuous-time signals, a
graph signal can be perfectly localized in both vertex and fre-
quency domains. The conditions for having perfect localization
are stated in the following theorem, which we report here for
completeness of exposition; its proof can be found in [22].

Theorem 1: There is avector x, perfectly localized over both
vertex set S and frequency set F (i.e. x € Bx N Dg) if and only
if the operator BDB (or DBD) has an eigenvalue equal to
one; in such a case, x is an eigenvector of BDB associated to
the unitary eigenvalue.

Equivalently, the perfect localization properties can be ex-
pressed in terms of the operators BD and DB. Indeed, since
the operators BD and DB have the same singular values [18],
perfect localization onto the sets S and F can be achieved if and
only if

IBD|l; = [[DB|; = 1. ()

Building on these previous results on GSP, in the next section
we introduce the proposed LMS strategy for adaptive estimation
of graph signals.

III. LMS ESTIMATION OF GRAPH SIGNALS

The least mean square algorithm, introduced by Widrow and
Hoff [41], is one of the most popular methods for adaptive filter-
ing. Its applications include echo cancelation, channel equaliza-
tion, interference cancelation and so forth. Although there exist
algorithms with faster convergence rates such as the Recursive
Least Square (RLS) methods [38], LMS-type methods are pop-
ular because of their ease of implementation, low computational
costs and robustness. For these reasons, a huge amount of re-
search was produced in the last decades focusing on improving

the performance of LMS-type methods, exploiting in many cases
some prior information that is available on the observed signals.
For instance, if the observed signal is known to be sparse in
some domain, such prior information can help improve the es-
timation performance, as demonstrated in many recent efforts
in the area of compressed sensing [42], [43]. Some of the early
works that mix adaptation with sparsity-aware reconstruction
include methods that rely on the heuristic selection of active
taps [44], and on sequential partial updating techniques [45];
some other methods assign proportional step-sizes to different
taps according to their magnitudes, such as the proportionate
normalized LMS (PNLMS) algorithm and its variations [46].
In subsequent studies, motivated by the LASSO technique [47]
and by connections with compressive sensing [43], [48], sev-
eral algorithms for sparse adaptive filtering have been proposed
based on LMS [49], RLS [50], and projection-based methods
[51]. Finally, sparsity aware distributed methods were proposed
in [52]-[56].

In this paper, we aim to exploit the intrinsic sparsity that
is present in band-limited graph signals, thus designing proper
sampling strategies that guarantee adaptive reconstruction of
the signal, with guaranteed mean-square performance, from a
limited number of observation sampled from the graph. To this
aim, let us consider a signal 2y € C defined over the graph
G = (V,€). The signal is initially assumed to be perfectly band-
limited, i.e. its spectral content is different from zero only on
a limited set of frequencies F. Later on, we will relax such an
assumption. Let us consider partial observations of signal x,
i.e. observations over only a subset of nodes. Denoting with
S the sampling set (observation subset), the observed signal at
time n can be expressed as:

y[n] = D(xy + v[n]) = DBz, + Dv|n| )

where D is the vertex-limiting operator defined in (4), which
takes nonzero values only in the set S, and v[n] is a zero-
mean, additive noise with covariance matrix C,. The second
equality in (9) comes from the bandlimited assumption, i.e.
Bx) = x, with B denoting the operator in (5) that projects
onto the (known) frequency set F. We remark that, differently
from linear observation models commonly used in adaptive fil-
tering theory [38], the model in (9) has a free sampling parameter
D that can be properly selected by the designer, with the aim
of reducing the computational/memory burden while still guar-
anteeing theoretical performance, as we will illustrate in the
following sections. The estimation task consists in recovering
the band-limited graph signal « from the noisy, streaming, and
partial observations y[n| in (9). Following an LMS approach
[41], the optimal estimate for x( can be found as the vector that
solves the following optimization problem:

min E ||y[n] — DBz|? (10)
xT

st. Bx =,

where E(-) denotes the expectation operator. The solution of
problem (10) minimizes the mean-squared error and has a band-
width limited to the frequency set F. For stationary y[n], the
optimal solution of (10) is given by the vector & that satisfies
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Algorithm 1: LMS algorithm for graph signals.

Start with «[0] € By chosen at random. Given a sufficiently
small step-size ;o > 0, for each time n > 0, repeat:

@ln+1) = 2[n] + uBD (yln] — a[n])  (12)
the normal equations [38]:
BDB & = BD E{y[n]}. (11)

Exploiting (9), this statement can be readily verified noticing
that & minimizes the objective function of (10) and is bandlim-
ited, i.e. it satisfies B& = &. Nevertheless, in many linear regres-
sion applications involving online processing of data, the expec-
tation E{y[n]} may be either unavailable or time-varying, and
thus impossible to update continuously. For this reason, adap-
tive solutions relying on instantaneous information are usually
adopted in order to avoid the need to know the signal statis-
tics beforehand. A typical solution proceeds to optimize (10)
by means of a steepest-descent procedure. Thus, letting x[n]
be the instantaneous estimate of vector x, the LMS algorithm
for graph signals evolves as illustrated in Algorithm 1, where
u > 01is a (sufficiently small) step-size, and we have exploited
the fact that D is an idempotent operator, and Bx[n| = x[n]
(i.e., x[n] is band-limited) for all n. Algorithm 1 starts from
an initial signal that belongs to the Paley-Wiener space for the
set F, and then evolves implementing an alternating orthogonal
projection onto the vertex set S (through D) and the frequency
set F (through B). The properties of the LMS recursion in (12)
crucially depend on the choice of the sampling set S, which de-
fines the structure of the operator D [cf. (4)]. To shed light on the
theoretical behavior of Algorithm 1, in the following sections
we illustrate how the choice of the operator D affects the re-
construction capability, mean-square stability, and steady-state
performance of the proposed LMS strategy.

A. Reconstruction Properties

It is well known from adaptive filters theory [38] that the
LMS algorithm in (12) is a stochastic approximation method
for the solution of problem (10), which enables convergence in
the mean-sense to the true vector @ (if the step-size i is chosen
sufficiently small), while guaranteing a bounded mean-square
error (as we will see in the sequel). However, since the existence
of a unique band-limited solution for problem (12) depends
on the adopted sampling strategy, the first natural question to
address is: What conditions must be satisfied by the sampling
operator D to guarantee reconstruction of signal x from the
selected samples? The answer is given in the following Theorem,
which gives a necessary and sufficient condition to reconstruct
graph signals from partial observations using Algorithm 1.

Theorem 2: Problem (10) admits a unique solution, i.e. any
band-limited signal x, can be reconstructed from its samples
taken in the set S, if and only if

|DB|, <1, (13)

i.e. if the matrix BDB does not have any eigenvector that is
perfectly localized on S and bandlimited on F.

Proof: From (11), exploiting the relation D =1 - D, it
holds

(I—- BDB) zy = BDE{y[n]}. (14)

Hence, it is possible to recover xy from (14) if I — BDB
is invertible. This happens if the sufficient condition (13) holds
true. Conversely, if [DB||2 = 1 (or, equivalently, | BD||» = 1),
from (8) we know that there exist band-limited signals that are
perfectly localized over S. This implies that, if we sample one
of such signals over the set S, we get only zero values and then
it would be impossible to recover x from those samples. This
proves that condition (13) is also necessary. ]

A necessary condition that enables reconstruction, i.e. the
non-existence of a non-trivial vector x satisfying DBx = 0,
is that |S| > |F|. However, this condition is not sufficient, be-
cause matrix DB in (9) may loose rank, or easily become ill-
conditioned, depending on the graph topology and sampling
strategy defined by D. This suggests that the location of samples
plays a key role in the performance of the LMS reconstruction
algorithm in (12). For this reason, in Section III-D we will con-
sider a few alternative sampling strategies satisfying different
optimization criteria.

B. Mean-Square Analysis

When condition (13) holds true, Algorithm 1 can reconstruct
the graph signal from a subset of samples. In this section, we
study the mean-square behavior of the proposed LMS strategy,
illustrating how the sampling operator D affects its stability and
steady-state performance. From now on, we view the estimates
x[n] as realizations of a random process and analyze the per-
formance of the LMS algorithm in terms of its mean-square
behavior. Let Z[n] = x[n] — xy be the error vector at time n.
Subtracting o from the left and right hand sides of (12), using
(9) and relation Bz[n] = x[n], we obtain:

zn+1] = (I-BDB)Z[n| + uBDv[n].  (15)

Applying a GFT to each side of (15) (i.e., multiplying by
UH), and exploiting the structure of matrix B in (5), we obtain

3n+1]=1-pXUYDUX) 5] + XU Doln], (16)

where 3[n] = U Z[n] is the GFT of the error [n]. From (16)
and the definition of X in (5), since 5;[n] = 0 for all i ¢ F, we
can analyze the behavior of the error recursion (16) only on the
support of 3[n], i.e. 3[n] = {5;[n],i € F} € C¥I. Thus, letting
Uz € CV*¥Ibe the matrix having as columns the eigenvectors
of the Laplacian matrix associated to the frequency indices F,
the error recursion (16) can be rewritten in compact form as:

Sn+1] =1 - pULDUF) 8]+ pULDo[n].  (17)

The evolution of the error 8[n] = UZz[n| in the com-
pact transformed domain is totally equivalent to the behavior
of x[n] from a mean-square error point of view. Thus, us-
ing energy conservation arguments [57], we consider a gen-
eral weighted squared error sequence ||3[n]||% = 3[n]" ®5[n],
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where ® € CM1*171 is any Hermitian nonnegative-definite ma-
trix that we are free to choose. In the sequel, it will be clear the
role played by a proper selection of the matrix ®. Then, from
(17) we can establish the following variance relation:

E[[3[n +1]|[3 = E[3[n]l3 + #* E{v[n]" DUF®U} Dv[n]}
= E|[3[n]||3 + 1> Tr(@UEDC,DU¥)
(18)
where Tr(+) denotes the trace operator, and
® = (I-pUfDU) @ (I-pUZDUy). (19)

Letp = vec(®) and ¢’ = vec(®’), where the notation vec(-)
stacks the columns of @ on top of each other and vec™ () is
the inverse operation. We will use interchangeably the notation
3]/ and ||3]|%, to denote the same quantity 3" ®3. Exploiting
the Kronecker product property

vee (X®Y) = (Y7 @ X)vec(®),
and the trace property
Tr (®X) = vee(X7)T vec(®),

in the relation (18), we obtain:

E[I5[n +1][15 = E[I3[n]4, + p?vec(G) ¢ (20)
where

G =UZDC, DU, 1)

Q= (I1-pU}fDUs) ® (I-pUfDUy). (22)

The following theorem guarantees the asymptotic mean-
square stability (i.e., convergence in the mean and mean-square
error sense) of the LMS algorithm in (12).

Theorem 3: Assume model (9) holds. Then, for any bounded
initial condition, the LMS strategy (12) asymptotically con-
verges in the mean-square error sense if the sampling operator
D and the step-size | are chosen to satisfy (13) and

0<p< (23)

Amax (Uf;:IDU]:) 7
With Ay ax (A) denoting the maximum eigenvalue of the symmet-
ric matrix A. Furthermore, it follows that, for sufficiently small
step-sizes:

lim sup E|[[8[n]|*> = O(p). (24)
Proof: Letting r = vec(G), recursion (20) can be equiva-
lently recast as:

n—1
E[3[n]l5, = EI3[0]lg: , +#*r" Y Qe (29
where E||5[0]|| denotes the initial condition. We first note that
if Q is stable, Q" — 0 as n — oco. In this way, the first term
on the RHS of (25) vanishes asymptotically. At the same time,
the convergence of the second term on the RHS of (25) depends
only on the geometric series of matrices 27;01 Q', which is
known to be convergent to a finite value if the matrix Q is a
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stable matrix [58]. In summary, if Q is stable, the RHS of (25)
asymptotically converges to a finite value, and we conclude that
E|[8[n]||, will converge to a steady-state value. From (22), we
deduce that Q is stable if matrix T — MU? DUy is stable as
well. This holds true under the two following conditions. The
first condition is that matrix U}I DUf=1- Ug DU must
have full rank, i.e. (13) holds true, where we have exploited the
relation

IDU#| = DU = |DBJ|.

Now recalling that, for any Hermitian matrix X, it holds
[IX|I = p(X) [58], with p(X) denoting the spectral radius of X,
the second condition guaranteing the stability of Q is that || —
pULDUf| < 1, which holds true for any step-sizes satisfying
(23). This concludes the first part of the Theorem.

We now prove the second part. Selecting ¢ = vec(I) in (25),
we obtain the following bound

E|[3[n]|* < E[3[0]|¢

Q" vee(r) T H cZ Q" @6

where ¢ = ||r||||vec(I)||. Taking the limit of (26) as n — oo,
since || Q|| < 1 if conditions (13) and (23) hold, we obtain

e

n—00

IN

27)

From (22), we have
2
1Qll = L pULDU|? = (p(1 - wULDUS))

< max {(1— pé)*, (1 — w)*}

(a)

< 1 =2+ p26? (28)

where 0 = Amax (UgDU}‘), V= )Lmin(UgDUf), and in (a)
we have exploited § > v. Substituting (28) in (27), we get

we

: 2
tim E 5[] < 51

n—00

(29)

It is easy to check that the upper bound (29) does not exceed
pc/v for any stepsize 0 < pu < v/8%. Thus, we conclude that
(24) holds for sufficiently small step-sizes. |

C. Steady-State Performance

Taking the limit of (20) as n — oo (assuming conditions (13)
and (23) hold true), we obtain:

lim E[[3[n][t_q),

n—00

= p?vec(G)T . (30)

Expression (30) is a useful result: it allows us to derive several
performance metrics through the proper selection of the free
weighting parameter ¢ (or ®). For instance, let us assume that
one wants to evaluate the steady-state mean square deviation

(MSD) of the LMS strategy in (12). Thus, selecting ¢ = (I —
Q) !vec(I) in (30), we obtain
MSD = lim E|z[n]||* = lim E|/3[n]|?
n—o0 n—o0
= u?vec(G)T (I — Q) vec(I). (31)
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Sampling strategy 1: Minimization of MSD.

InputData : M, the number of samples.
OutputData : S, the sampling set.

Function : initialize S = ()
while [S| < M
s=argmin vee(G(Dasugjy)) (1= Q(Dsujy) vee(D):;
S —Su{s}h
end

If instead one is interested in evaluating the mean square devi-
ation obtained by the LMS algorithm in (12) when reconstruct-
ing the value of the signal associated to k-th vertex of the graph,
selecting ¢ = (I — Q) 'vec(UZLE,;Ug) in (30), we obtain

MSD; = lim E|&[n][3, = lim B30I}, u,

= Pvec(G) (I - Q) 'vec(ULE, Ux), (32)
where E;, = diag{ey. }, with e, € RY denoting the k-th canon-
ical vector. In the sequel, we will confirm the validity of
these theoretical expressions by comparing them with numerical
simulations.

D. Sampling Strategies

As illustrated in the previous sections, the properties of the
proposed LMS algorithm in (12) strongly depend on the choice
of the sampling set S, i.e. on the vertex limiting operator D.
Indeed, building on the previous analysis, it is clear that the
sampling strategy must be carefully designed in order to: a) en-
able reconstruction of the signal; b) guarantee stability of the
algorithm; and c) impose a desired mean-square error at con-
vergence. In particular, we will see that, when sampling signals
defined on graphs, besides choosing the right number of sam-
ples, whenever possible it is also fundamental to have a strategy
indicating where to sample, as the samples’ location plays a
key role in the performance of the reconstruction algorithm in
(12). To select the best sampling strategy, one should optimize
some performance criterion, e.g. the MSD in (31), with respect
to the sampling set S, or, equivalently, the vertex limiting op-
erator D. However, since this formulation translates inevitably
into a selection problem, whose solution in general requires an
exhaustive search over all the possible combinations, the com-
plexity of such procedure becomes intractable also for graph
signals of moderate dimensions. Thus, in the sequel we will
provide some numerically efficient, albeit sub-optimal, greedy
algorithms to tackle the problem of selecting the sampling set.

Greedy Selection - Minimum MSD: This strategy aims at
minimizing the MSD in (31) via a greedy approach: the method
iteratively selects the samples from the graph that lead to the
largest reduction in terms of MSD. Since the proposed greedy
approach starts from an initially empty sampling set, when |S| <
|F|, matrix I — Q in (31) is inevitably rank deficient. Then,
in this case, the criterion builds on the pseudo-inverse of the
matrix I — Q in (31), denoted by (I — Q)T, which coincides
with the inverse as soon as |S| > |F|. The resulting algorithm is

Sampling strategy 2: Maximization of |[U¥ DU/, .

InputData : M, the number of samples.
OutputData : S, the sampling set.
Function : initialize S = ()
while |S| < M
s = argmjax ‘UEDSU{J-}U; 4

S—Su{sh
end

summarized in the table entitled “Sampling strategy 17, where
we made explicit the dependence of matrices G and Q on the
sampling operator D. In the sequel, we will refer to this method
as the Min-MSD strategy.

Greedy Selection - Maximum [UXDU|, : In this case, the
strategy aims at maximizing the volume of the parallelepiped
build with the selected rows of matrix U z. The algorithm starts
including the row with the largest norm in U £, and then it adds,
iteratively, the rows having the largest norm and, at the same
time, are as orthogonal as possible to the vectors already in S.
The rationale underlying this strategy is to design a well suited
basis for the graph signal that we want to estimate. This criterion
coincides with the maximization of the the pseudo-determinant
of the matrix Ug DUy (i.e. the product of all nonzero eigen-
values), which is denoted by |U¥ DU]-‘| .- In the sequel, we
motivate the rationale underlying this strategy. Let us consider
the eigendecomposition Q = VAV . From (31), we obtain:

MSD = zi*vec(G)' (T — Q) ' vec(I)
= 1?vec(G)T V(I — A) 'V vec(T)
(72

2 Di - 4q;

—_— 33
W) &9

=pu

where p = {p;} = ViIvec(G), ¢ = {¢;} = Vvec(I). From
(33), we notice how the MSD of the LMS algorithm in (12)
strongly depends on the values assumed by the eigenvalues
%i(Q), i =1,...,|F|*. In particular, we would like to design
matrix Q in (22) such that its eigenvalues are as far as possible
from 1. From (22), it is easy to understand that

2(Q) = (1 — pr (ULDUy)) (1 — pi(UEDUR))

k,l=1,...,|F| Thus, requiring 1;(Q),i = 1,...,|F|*, tobe
as far as possible from 1 translates in designing the matrix
UZDUZ € CV1¥71 such that its eigenvalues are as far as pos-
sible from zero. Thus, a possible surrogate criterion for the
approximate minimization of (33) can be formulated as the se-
lection of the sampling set S (i.e. operator D) that maximizes
the determinant (i.e. the product of all eigenvalues) of the ma-
trix ULDUx. When |S| < |F|, matrix UDUg is inevitably
rank deficient, and the strategy builds on the pseudo-determinant
of UZDUy. Of course, when |S| > ||, the pseudo determi-
nant coincides with the determinant. The resulting algorithm is
summarized in the table entitled “Sampling strategy 2”. In the
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Sampling strategy 3: Maximization of 1.\, (UZDUp).

min

InputData : M, the number of samples.
OutputData : S, the sampling set.

Function : initialize S = ()
while |S| < M
§ = arg max )»fnin (UgDSU{]‘}U}‘);
J
S —SU{s};
end

Fig. 1.

Example of graph signal and sampling.

sequel, we will refer to this method as the Max-Det sampling
strategy.

Greedy Selection - Maximum 1.\, (UXDU): Finally, using
similar arguments as before, a further surrogate criterion for the
minimization of (33) can be formulated as the maximization of
the minimum nonzero eigenvalue of the matrix U;I DU £, which
is denoted by A}, (UXDUy). This greedy strategy exploits
the same idea of the sampling method introduced in [10] in the
case of batch signal reconstruction. The resulting algorithm is
summarized in the table entitled “Sampling strategy 3”. We will
refer to this method as the Max-\,,;, sampling strategy.

In the sequel, we will illustrate some numerical results aimed
at comparing the performance achieved by the proposed LMS

algorithm using the aforementioned sampling strategies.

E. Numerical Results

In this section, we first illustrate some numerical results aimed
at confirming the theoretical results in (31) and (32). Then, we
will illustrate how the sampling strategy affects the performance
of the proposed LMS algorithm in (12). Finally, we will evaluate
the effect of a graph mismatching in the performance of the
proposed algorithm.

Performance: Let us consider the graph signal shown in Fig. 1
and composed of N = 50 nodes, where the color of each ver-
tex denotes the value of the signal associated to it. The signal
has a spectral content limited to the first ten eigenvectors of
the Laplacian matrix of the graph in Fig. 1, i.e. |F| = 10. The
observation noise in (9) is zero-mean, Gaussian, with a diagonal
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Fig. 2. Comparison between theoretical MSD in (30) and simulation results,
at each vertex of the graph. The theoretical expressions match well with the
numerical results.

‘‘‘‘‘‘‘‘ ISI=10
----- ISI =20 i
ISI=30
_ ISI =50 I
m
= 1
a
22}
=
&
E 4
H
,\( 7
N,
TN seons —
0 50 100 150 200 250 300 350 400

Tteration index

Fig. 3. Transient MSD, for different number of samples |S|. Increasing the
number of samples, the learning rate improves.

covariance matrix, where each element is chosen uniformly ran-
dom between 0 and 0.01. An example of graph sampling, ob-
tained selecting |S| = 10 vertexes using the Max-Det sampling
strategy, is also illustrated in Fig. 1, where the sampled vertexes
have thicker marker edge. To validate the theoretical results in
(32), in Fig. 2 we report the behavior of the theoretical MSD val-
ues achieved at each vertex of the graph, comparing them with
simulation results, obtained averaging over 200 independent
simulations and 100 samples of squared error after convergence
of the algorithm. The step-size is chosen equal to ¢+ = 0.5 and,
together with the selected sampling strategy D, they satisfy the
reconstruction and stability conditions in (13) and (23). As we
can notice from Fig. 2, the theoretical predictions match well
the simulation results.

Effect of sampling strategies: It is fundamental to assess the
performance of the LMS algorithm in (12) with respect to the
adopted sampling set S. As a first example, using the Max-Det
sampling strategy, in Fig. 3 we report the transient behavior
of the MSD, considering different number of samples taken
from the graph, i.e. different cardinalities |S| of the sampling
set. The results are averaged over 200 independent simulations,
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Fig. 4. Steady-state MSD versus number of samples, for different sampling
strategies.

and the step-sizes are tuned in order to have the same steady-
state MSD for each value of |S|. As expected, from Fig. 3
we notice how the learning rate of the algorithm improves by
increasing the number of samples. Finally, in Fig. 4 we illustrate
the steady-state MSD of the LMS algorithm in (12) comparing
the performance obtained by four different sampling strategies,
namely: a) the Max-Det strategy; b) the Max-A.,;, strategy; c)
the Min-MSD strategy; and d) the random sampling strategy,
which simply picks at random |S| nodes. We consider the same
parameter setting of the previous simulation. The results are
averaged over 200 independent simulations. As we can notice
from Fig. 4, the LMS algorithm with random sampling can
perform quite poorly, especially at low number of samples. This
poor result of random sampling emphasizes that, when sampling
a graph signal, what matters is not only the number of samples,
but also (and most important) where the samples are taken.
Comparing the other sampling strategies, we notice from Fig. 4
that the Max-Det and Max-A,i, strategies perform well also
at low number of samples (|S| = 10 is the minimum number
of samples that allows signal reconstruction). As expected, the
Max-Det strategy outperforms the Max-A,,;, strategy, because
it considers all the modes of the MSD in (33), as opposed to the
single mode associated to the minimum eigenvalue considered
by the Max-A, i, strategy. It is indeed remarkable that, for low
number of samples, Max-Det outperforms also Min-MSD, even
if the performance metric is MSD. There is no contradiction here
because we need to remember that all the proposed methods are
greedy strategies, so that there is no claim of optimality in all
of them. However, as the number of samples increases above
the limit |S| = |F| = 10, the Min-MSD strategy outperforms
all other methods. This happens because the Min-MSD strategy
takes into account information from both graph topology and
spatial distribution of the observation noise (cf. (31)). Thus,
when the number of samples is large enough to have sufficient
degrees of freedom in selecting the samples’ location, the Min-
MSD strategy has the capability of selecting the vertexes in
a good position to enable a well-conditioned signal recovery,
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Fig.5. Transient MSD versus iteration index, for different links removed from

the original graph in Fig. 1.

with possibly low additive noise, thus improving the overall
performance of the LMS algorithm in (12). Conversely, when
the number of samples is very close to its minimum value, the
Min-MSD criterion may give rise to ill-conditioning of the signal
recovery strategy because the low noise samples may be in sub-
optimal positions with respect to signal recovery. This explains
its losses with respect to Max-Det and Max-X,,;, strategies,
for low values of the number of samples. This analysis suggests
that an optimal design of the sampling strategy for graph signals
should take into account processing complexity (in terms of
number of samples), prior knowledge (e.g., graph structure,
noise distribution), and achievable performance.

Effect of graph mismatching: In this last example, we aim
at illustrating how the performance of the proposed method
is affected by a graph mismatching during the processing. To
this aim, we take as a benchmark the graph signal in Fig. 1,
where the signal bandwidth is set equal to |F| = 10. The band-
width defines also the sampling operator D, which is selected
through the Max-Det strategy, introduced in Section III-D, using
|S| = 10 samples. Now, we assume that the LMS processing in
(12) is performed keeping fixed the sampling operator D, while
adopting an operator B in (5) that uses the same bandwidth as
for the benchmark case (i.e., the same matrix 32 ), but different
GFT operators U, which are generated as the eigenvectors of
Laplacian matrices associated to graphs that differs from the
benchmark in Fig. 1 for one (removed) link. The aim of this
simulation is to quantify the effect of a single link removal on
the performance of the LMS strategy in (12). Thus, in Fig. 5,
we report the transient MSD versus the iteration index of the
proposed LMS strategy, considering four different links that are
removed from the original graph. The four removed links are
those shown in Fig. 1 using thicker lines; the colors and line
styles are associated to the four behaviors of the transient MSD
in Fig. 5. The results are averaged over 100 independent simula-
tions, using a step-size ;1 = 0.5. The theoretical performance in
(31) achieved by the ideal LMS, i.e. the one perfectly matched to
the graph, are also reported as a benchmark. As we can see from
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Algorithm 2: LMS with Adaptive Graph Sampling.
Start with s[0] chosen at random, D[0] = I, and F[0] = V.
Given i > 0, for each time n > 0, repeat:

1) sln+ 1] = T, (s[n] + U7 Dln] (y[n] ~ Usfn])):

2)Set Fin+1]={ie{l,...,N}:sn+1] #0}

3) Given Uz, 1], select D[n + 1] according to one of
the criteria proposed in Section III-D;

Fig. 5, the removal of different links from the graph leads to very
different performance obtained by the algorithm. Indeed, while
removing Link 1 (i.e., the red one), the algorithm performs as
in the ideal case, the removal of links 2, 3, and 4, progressively
determine a worse performance loss. This happens because the
structure of the eigenvectors of the Laplacian of the benchmark
graph is more or less preserved by the removal of specific links.
Some links have almost no effects (e.g., Link 1), whereas some
others (e.g., Link 4) may lead to deep modification of the struc-
ture of such eigenvectors, thus determining the mismatching of
the LMS strategy in (12) and, consequently, its performance
degradation. This example opens new theoretical questions that
aim at understanding which links affect more the graph signals’
estimation performance in situations where both the signal and
the graph are jointly time-varying. We plan to tackle this exciting
case in future work.

IV. LMS ESTIMATION WITH ADAPTIVE GRAPH SAMPLING

The LMS strategy in (12) assumes perfect knowledge of the
support where the signal is defined in the graph frequency do-
main, i.e. F. Indeed, this prior knowledge allows to define the
projector operator B in (5) in a unique manner, and to implement
the sampling strategies introduced in Section III-D. However,
in many practical situations, this prior knowledge is unrealistic,
due to the possible variability of the graph signal over time at
various levels: the signal can be time varying according to a
given model; the signal model may vary over time, for a given
graph topology; the graph topology may vary as well over time.
In all these situations, we cannot always assume that we have
prior information about the frequency support F, which must
then be inferred directly from the streaming data y[n| in (9).
Here, we consider the important case where the graph is fixed,
and the spectral content of the signal can vary over time in an
unknown manner. Exploiting the definition of GFT in (3), the
signal observations in (9) can be recast as:

y[n] = DUsy + Do[n]. (34)

The problem then translates in estimating the coefficients of
the GFT s(, while identifying its support, i.e. the set of in-
dexes where s is different from zero. The support identifica-
tion is deeply related to the selection of the sampling set. Thus,
the overall problem can be formulated as the joint estimation
of sparse representation s and sampling strategy D from the

observations y[n] in (34), i.e.,

min E|y[n] — DUs|> + 1 f(s), (35)

s,DeD

where D is the (discrete) set that constraints the selection of the
sampling strategy D, f(-) is a sparsifying penalty function (typ-
ically, ¢y or 1 norms), and A > 0 is a parameter that regulates
how sparse we want the optimal GFT vector s. Problem (35) is a
mixed integer nonconvex program, which is very complicated to
solve, especially in the adaptive context considered in this paper.
Thus, to favor low complexity online solutions for (35), we pro-
pose an algorithm that alternates between the optimization of
the vector s and the selection of the sampling operator D. The
rationale behind this choice is that, given an estimate for the
support of vector s, i.e. F, we can select the sampling operator
D in a very efficient manner through one of the sampling strate-
gies illustrated in Section III-D. Then, starting from a random
initialization for s and a full sampling for D (i.e., D = 1), the
algorithm iteratively proceeds as follows. First, fixing the value
of the sampling operator D[n] at time n, we update the estimate
of the GFT vector s using an online version of the celebrated
ISTA algorithm [59], [60], which proceeds as:

sln+1]=T;, (s[n] + ,uUHD[n] (y[n] — Us[n])) , (36)

n > 0, where ;© > 0is a (sufficiently small) step-size, and T',, (s)
is a thresholding function that depends on the sparsity-inducing
penalty f(-) in (35). Several choices are possible, as we will
illustrate in the sequel. The aim of recursion (36) is to estimate
the GFT s of the graph signal x; in (9), while selectively
shrinking to zero all the components of s that are outside its
support, i.e., which do not belong to the bandwidth of the graph
signal. Then, the online identification of the support of the GFT
s( enables the adaptation of the sampling strategy, which can be
updated using one of the strategies illustrated in Section III-D.
Intuitively, the algorithm will increase (reduce) the number of
samples used for the estimation, depending on the increment
(reduction) of the current signal bandwidth. The main steps of
the LMS algorithm with adaptive graph sampling are listed in
Algorithm 2.

Thresholding functions : Several different functions can be
used to enforce sparsity. A commonly used thresholding func-
tion comes directly by imposing an ¢; norm constraint in (35),
which is commonly known as the Lasso [47]. In this case, the
vector threshold function T, (s) is the component-wise thresh-
olding function 7, (s,, ) applied to each element of vector s,
with

Sm — 7> Sm > s
Tﬂ, (Sm) = 07 < sn <, (37)
Sm +'Y, Sm < --

The function T',, (s) in (37) tends to shrink all the components
of the vector s and, in particular, sets to zero the components
whose magnitude are within the threshold . Since the Lasso
constraint is known for introducing a large bias in the estimate,
the performance would deteriorate for vectors that are not suffi-
ciently sparse, i.e. graph signals with large bandwidth. To reduce
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Fig. 6. LMS with Adaptive Sampling: NMSD versus iteration index, for

different thresholding functions.

the bias introduced by the Lasso constraint, several other thresh-
olding functions can be adopted to improve the performance also
in the case of less sparse systems. A potential improvement can
be made by considering the non-negative Garotte estimator as in
[61], whose thresholding function is defined as a vector whose
entries are derived applying the threshold

Sm (1_72/372n>7 ‘Sm| >7;
Ty (sm) = (38)
0, |$m| <3
m =1,..., M. Finally, to completely remove the bias over

the large components, we can implement a hard thresholding
mechanism, whose function is defined as a vector whose entries
are derived applying the threshold

S s
Ty (sm) = 0

In the sequel, numerical results will illustrate how different
thresholding functions such as (37), (38), and (39), affect the
performance of Algorithm 2.

|Sm | > 73 39
|Sm| S v

1V. Numerical Results

In this section, we illustrate some numerical results aimed at
assessing the performance of the proposed LMS method with
adaptive graph sampling, i.e. Algorithm 2. In particular, to illus-
trate the adaptation capabilities of the algorithm, we simulate a
scenario with a time-varying graph signal with N = 50 nodes,
which has the same topology shown in Fig. 1, and spectral con-
tent that switches between the first 5, 15, and 10 eigenvectors of
the Laplacian matrix of the graph. The elements of the GFT s
inside the support are chosen to be equal to 1. The observation
noise in (9) is zero-mean, Gaussian, with a diagonal covariance
matrix C, = oI, with 02 = 4 x 10~*. In Fig. 6 we report the
transient behavior of the normalized Mean-Square Deviation
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Fig.7. LMS with Adaptive Sampling: | F| versus iteration index, for different

thresholding functions.

(NMSD), i.c.
l[s[n] — sol®
[[s0][?

versus the iteration index, considering the evolution of
Algorithm 2 with three different thresholding functions,

namely: a) the Lasso threshold in (37), the Garotte threshold
in (38), and the hard threshold in (39). Also, in Fig. 7, we illus-
trate the behavior of the estimate of the cardinality of F versus
the iteration index (cf. Step 2 of Algorithm 2), obtained by the
three aforementioned strategies at each iteration. The value of
the cardinality of F of the true underlying graph signal is also
reported as a benchmark. The curves are averaged over 100 in-
dependent simulations. The step-size is chosen to be p = 0.5,
the sparsity parameter A = 0.1, and thus the threshold is equal
to v = pi = 0.05 for all strategies. The sampling strategy used
in Step 3 of Algorithm 2 is the Max-Det method introduced in
Section III-D, where the number of samples M [n] to be selected
at each iteration is chosen to be equal to the current estimate of
cardinality of the set F'[n]. As we can notice from Fig. 6, the
LMS algorithm with adaptive graph sampling is able to track
time-varying scenarios, and its performance is affected by the
adopted thresholding function. In particular, from Fig. 6, we no-
tice how the algorithm based on the hard thresholding function
in (39) outperforms the other strategies in terms of steady-state
NMSD, while having the same learning rate. The Garotte based
algorithm has slightly worse performance with respect to the
method exploiting hard thresholding, due to the residual bias
introduced at large values by the thresholding function in (38).
Finally, we can notice how the LMS algorithm based on Lasso
may lead to very poor performance, due to misidentifications of
the true graph bandwidth. This can be noticed from Fig. 7 where,
while the Garotte and hard thresholding strategies are able to
learn exactly the true bandwidth of the graph signal (thus lead-
ing to very good performance in terms of NMSD, see Fig. 6),
the Lasso strategy overestimates the bandwidth of the signal,
i.e. the cardinality of the set F (thus leading to poor estimation

NMSD[n] =
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Fig. 8. Optimal Sampling at iteration n = 80.

\
[ X

\
\ ”.’

s

Fig. 9.

Optimal Sampling at iteration n = 180.

performance, see Fig. 6). Finally, to illustrate an example of
adaptive sampling, in Figs. 8, 9, and 10 we report the samples
(depicted as black nodes) chosen by the proposed LMS algo-
rithm based on hard thresholding at iterations n = 80, n = 180,
and n = 280. As we can notice from Figs. 6, 7 and 8, 9, and 10,
the algorithm always selects a number of samples equal to the
current value of the signal bandwidth, while guaranteeing good
reconstruction performance.

V. APPLICATION TO POWER SPATIAL DENSITY ESTIMATION IN
COGNITIVE NETWORKS

The advent of intelligent networking of heterogeneous de-
vices such as those deployed to monitor the 5G networks, power
grid, transportation networks, and the Internet, will have a strong
impact on the underlying systems. Situational awareness pro-
vided by such tools will be the key enabler for effective infor-
mation dissemination, routing and congestion control, network
health management, risk analysis, and security assurance. The
vision is for ubiquitous smart network devices to enable data-
driven statistical learning algorithms for distributed, robust, and
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Fig. 10. Optimal Sampling at iteration n = 280.

online network operation and management, adaptable to the dy-
namically evolving network landscape with minimal need for
human intervention. In this context, the unceasing demand for
continuous situational awareness in cognitive radio (CR) net-
works calls for innovative signal processing algorithms, com-
plemented by sensing platforms to accomplish the objectives of
layered sensing and control. These challenges are embraced in
the study of power cartography, where CRs collect data to esti-
mate the distribution of power across space, namely the power
spatial density (PSD). Knowing the PSD at any location allows
CRs to dynamically implement a spatial reuse of idle bands. The
estimated PSD map need not be extremely accurate, but precise
enough to identify idle spatial regions.

In this section, we apply the proposed framework for LMS
estimation of graph signals to spectrum cartography in cognitive
networks. We consider a 5G scenario, where a dense deploy-
ment of radio access points (RAPSs) is envisioned to provide a
service environment characterized by very low latency and high
rate access. Each RAP collects streaming data related to the
spectrum utilization of primary users (PU’s) at its geographi-
cal position. This information can then be sent to a processing
center, which collects data from the entire system, through high
speed wired links. The aim of the center is then to build a spatial
map of the spectrum usage, while processing the received data
on the fly and envisaging proper sampling techniques that enable
a proactive sensing of the system from only a limited number
of RAP’s measurements. As we will see in the sequel, the pro-
posed approach hinges on the graph structure of the signal re-
ceived from the RAP’s, thus enabling real-time PSD estimation
from a small set of observations that are smartly sampled from
the graph.

Numerical examples: Let us consider an operating region
where 100 RAPs are randomly deployed to produce a map
of the spatial distribution of power generated by the transmis-
sions of two active primary users. The PU’s emit electromag-
netic radiation with power equal to 1 Watt. For simplicity, the
propagation medium is supposed to introduce a free-space path
loss attenuation on the PU’s transmissions. The graph among
RAPs is built from a distance based model, i.e. stations that are
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Fig. 11.  PSD cartography: spatial distribution of primary users’ power, small
cell base stations deployment, graph topology, and graph signal.
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Fig. 12.  PSD cartography: Steady-state NMSD versus number of samples

taken from the graph, for different bandwidths used for processing.

sufficiently close to each other are connected through a link (i.e.
a;; = 1,if nodes 7 and j are neighbors). In Fig. 11, we illustrate
a pictorial description of the scenario, and of the resulting graph
signal. We assume that each RAP is equipped with an energy
detector, which estimates the received signal using 100 sam-
ples, considering an additive white Gaussian noise with variance
02 = 107*. The resulting signal is not perfectly band-limited,
but it turns out to be smooth over the graph, i.e. neighbor nodes
observe similar values. This implies that sampling such signals
inevitably introduces aliasing during the reconstruction process.
However, even if we cannot find a limited (lower than V) set of
frequencies where the signal is completely localized, the great-
est part of the signal energy is concentrated at low frequencies.
This means that if we process the data using a sufficient number
of observations and (low) frequencies, we should still be able to
reconstruct the signal with a satisfactory performance.

To illustrate an example of cartography based on the LMS
algorithm in (12), in Fig. 12 we report the behavior of the
steady-state NMSD versus the number of samples taken from
the graph, for different bandwidths used for processing. The
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Fig. 13.  PSD cartography: Transient NMSD versus iteration index, for differ-

ent number of samples and bandwidths used for processing.

step-size is chosen equal to 0.5, while the adopted sampling
strategy is the Max-Det method introduced in Section III-D.
The results are averaged over 200 independent simulations. As
expected, from Fig. 12, we notice that the steady-state NMSD of
the LMS algorithm in (12) improves by increasing the number
of samples and bandwidths used for processing. Interestingly,
in Fig. 12 we can see a sort of threshold behavior: the NMSD is
large for |S| < |F|, when the signal is undersampled, whereas
the values become lower and stable as soon as |S| > |F|. Fi-
nally, we illustrate an example that shows the tracking capability
of the proposed method in time-varying scenarios. In particular,
we simulate a situation the two PU’s switch between idle and
active modes: for 0 < n < 133 only the first PU transmits; for
133 < n < 266 both PU’s transmit; for 266 < n < 400 only
the second PU’s transmits. In Fig. 13 we show the behavior of
the transient NMSD versus iteration index, for different num-
ber of samples and bandwidths used for processing. The results
are averaged over 200 independent simulations. From Fig. 13,
we can see how the proposed technique can track time-varying
scenarios. Furthermore, its steady-state performance improves
with increase in the number of samples and bandwidths used
for processing. These results, together with those achieved in
Fig. 12, illustrate an existing tradeoff between complexity, i.e.
number of samples used for processing, and mean-square per-
formance of the proposed LMS strategy. In particular, using a
larger bandwidth and a (consequent) larger number of samples
for processing, the performance of the algorithm improves, at
the price of a larger computational complexity.

VI. CONCLUSION

In this paper we have proposed LMS strategies for adaptive es-
timation of signals defined over graphs. The proposed strategies
are able to exploit the underlying structure of the graph signal,
which can be reconstructed from a limited number of observa-
tions properly sampled from a subset of vertexes, under a band-
limited assumption. A detailed mean square analysis illustrates
the deep connection between sampling strategy and the proper-
ties of the proposed LMS algorithm in terms of reconstruction
capability, stability, and mean-square error performance. From
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this analysis, some sampling strategies for adaptive estimation
of graph signals are also derived. Furthermore, to cope with
time-varying scenarios, we also propose an LMS method with
adaptive graph sampling, which estimates and tracks the signal
support in the (graph)frequency domain, while at the same time
adapting the graph sampling strategy. Several numerical simula-
tions confirm the theoretical findings, and illustrate the potential
advantages achieved by these strategies for adaptive estimation
of band-limited graph signals. Finally, we apply the proposed
method to estimate and track the spatial distribution of power
transmitted by primary users in a cognitive network environ-
ment, thus illustrating the existing tradeoff between complexity
and mean-square performance of the proposed strategy.

We expect that such processing tools will represent a key tech-
nology for the design and proactive sensing of Cyber Physical
Systems, where a proper adaptive control mechanism requires
the availability of data driven sampling strategies able to control
the overall system by only checking a limited number of nodes,
in order to collect correct information at the right time, in the
right place, and for the right purpose.
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