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ABSTRACT 
This paper focuses on the performance of the minimum 
mean-squared error (MMSE) multiuser detector (MUD) 
in the downlink of direct-sequence code-division multi-
ple-access (DS-CDMA) systems. An analytical upper 
bound on the bit-error probability in frequency-nonse-
lective Rayleigh fading channels is derived. This bound 
is obtained by evaluating the bit-error probability of a 
linear detector, which is characterised by a reduced 
complexity with respect to the MMSE. The closeness of 
this theoretical bound to the ideal MMSE bit-error rate 
(BER) performance is analysed by simulation in several 
scenarios, evidencing the performance gain at low 
signal-to-noise (SNR) with respect to the decorrelator 
detector. Thus, this receiver can be considered a 
possible compromise between MMSE and decorrelator 
detector as far as performance and complexity is 
concerned. 

 
1. INTRODUCTION 
Multiuser Detection (MUD) techniques for DS-CDMA 
systems give significant performance improvement with 
respect to the conventional matched-filter receiver. 
Since the optimum maximum likelihood receiver has a 
great computational complexity, in the last years much 
attention has been paid to many suboptimal receivers 
[1]. Among the linear ones, the minimum mean-squared 
error (MMSE) detector offers many advantages [2] and 
it can also be implemented by means of a digital 
adaptive filter. An important feature of the MMSE 
receiver is the capability to counteract both the multiple-
access interference (MAI) and the thermal noise, thus 
maximising the signal to interference-plus-noise ratio at 
the detector output [1]. 
 The bit-error rate (BER) performance of the MMSE 
detector in additive white Gaussian noise (AWGN) 
channels has been studied extensively in [3], which 
provides a good approximation for the bit-error 
probability. An empirically derived formula is presented 
in [4] to establish the MMSE detector BER performance 
in frequency-flat Rayleigh fading channels, while the 
multipath scenario is usually addressed by using semi-
analytical approaches based on computer simulations 
(see e.g. [5] [6]). 
 This paper, differently from [4], establishes an upper 
bound on the MMSE BER performance for flat 
Rayleigh fading channels in downlink scenarios by using 
a fully theoretical approach. A reduced complexity 
receiver, called Approximated MMSE (AMMSE) 
detector, is introduced by approximating the analytical 

expression of the MMSE detector. The BER per-
formance of the AMMSE detector will be studied 
analytically and by simulation, and it will be shown to 
be a tight upper bound to the MMSE performance when 
the signal-to-noise ratio (SNR) is not too high. 
 
2. SYSTEM MODEL 
The baseband signal transmitted by the base station to K 
users, in the downlink of a CDMA system, is expressed 
by 
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where T is the symbol duration, kA  and )(tsk  are the 
amplitude and the spreading waveform, respectively, 
and ][ibk  is the ith symbol. The spreading waveform 
can be expressed as 
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where N is the processing gain, NTTc /=  is the chip 
duration, p(t) is the impulse response of the chip pulse 
shaping filter and ][ jck  is the jth value of the kth user 
binary spreading code. If BPSK modulation is used, 
then ][ibk  belongs to a set of independent and equally 
probable }1{±  random variables. 
 This paper assumes that the signal z(t), transmitted 
by the base station, passes through a frequency-flat 
channel with impulse response 
  )())(exp()(),( τδθβτ ⋅= tjttg , (3) 

where )(tβ  and )(tθ  are the gain and the phase shift of 
the channel respectively, and )(τδ  is the Dirac delta 
function. The amplitude )(tβ  and the phase shift )(tθ  
are supposed to be slowly time-varying, and conse-
quently they can be considered constant during one 
symbol interval. For any given time t, the gain )(tβ  is 
modeled as a Rayleigh random variable, of unit power 
(i.e. 1}{ 2 =βE ), with probability density function 
(PDF) 

  )()exp(2)( 1
2 ββββ −⋅−⋅= uf , (4) 

where )(1 β−u  is the unitary step function. 
 At the receiver side, the channel-affected signal is 
perturbed by a complex zero-mean additive white 
Gaussian noise (AWGN) n(t), as expressed by (5), 

  ( ) ( , ) ( ) ( )r t g t z t dt n tτ τ
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    )()())(exp()( tntztjt +⋅= θβ . (5) 



The received signal r(t) is firstly filtered by a chip 
matched filter and successively sampled at the chip rate 

cT/1 , thus obtaining (6), where ][SIGNAL, lrn  is the 
useful part related to z(t) and ][AWGN, lrn  is the in-band 
component of the thermal noise 
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By using the following definitions 

  T
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  )(][ lTl ββ = ,  ))(exp(][ lTjl θψ = , (9) 

we obtain, in matrix form, 

         =+= ][][][ AWGNSIGNAL lll rrr   
   ][][][][ AWGN llll rCAb +⋅= ψβ , (10) 

where ][SIGNAL lr  and ][AWGN lr  are the vectors obtained 
collecting the ][SIGNAL, lrn  and ][AWGN, lrn  values, 
respectively, as in (7), and the entries of the vector 

][AWGN lr  are zero mean i.i.d. complex Gaussian 
random variables with power 22σ , as expressed by 

  N
HllE Irr 2

AWGNAWGN 2}][][{ σ= .  

 
3. MMSE RECEIVER IN FLAT FADING CHANNELS 
Since the transmitted data are BPSK mapped, the 
receiver decision rule can be expressed as  

  } ] ][][sgn{Re[][� lllb H
kk rw= , (11) 

where the ][lkw  column vector represents the detector 
for the user k at the discrete time l. The MMSE detector 
is obtained by minimising the mean-squared error 

} |][][][| { 2lllbE H
kk rw− , which leads to [7] 
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where CCR T=  is the matrix containing the cross-
correlation coefficients of the users spreading codes, 

AH ][][ ll β=  is the channel-affected amplitude diago-
nal matrix, the subscript :,k indicates the extraction of 
the kth column of the relative matrix, and [ ]lψ , defined 
in (9), represents the channel phase-shift. 
 Assuming perfect channel state information, and 
defining the real vector ][lkm  as 

  ( )1

 : , 
[ ] [ ] [ ] [ ]k k k
l l l lψ ∗ −= =m w CM H   , (14) 

from (10) and (14) it follows that the decision variable 
in (11) can be evaluated by exploiting the following 
expression 

    AWGNRe[ [ ] [ ] ] [ ] ( [ ] [ ] [ ])H T
k kl l l l l l= +w r m CH b r# , (15) 

where ] ][][Re[][~
AWGNAWGN lll rr ∗= ψ  is a real vector with 

autocorrelation matrix 

  N
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3.1 Probability of Error of the MMSE Detector 
The decision variable expressed by (15) is similar to the 
one in AWGN channels [1] [8], with the only exception 
that the amplitude matrix ][lH  and the receiver vector 

][lkm  are time dependent. Therefore, in order to obtain 
the MMSE bit-error probability, we can use the same 
approach of [3] [1] by exploiting the Gaussian approxi-
mation of the residual multiple-access interference 
(MAI) at the detector output. Indeed, it has been shown 
in [3] that this approximation is very good in a wide 
range of situations. As a consequence, supposing that 
user 1 is the user of interest, and replacing the 
amplitudes kA  with the β -dependent one kAβ , the 
MMSE bit-error probability conditioned to the 
knowledge of β  is [3] 
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where 1/ 2( ) (2 exp( / 2)
x

Q x dπ ν ν
+∞

− 2= ) −∫  and the sub-
script 1,k indicates the extraction of the element 1,k of 
the corresponding matrix. The average BER can be 
obtained integrating (16) over the PDF of the channel 
gain β , which for Rayleigh fading is expressed by (4). 
The average BER is consequently expressed by 
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However, an analytical evaluation of the integral (17) is 
difficult, mainly because the integration variable β  is 
contained inside a matrix that has to be inverted (see 
(13)). To the knowledge of the authors, the analytical 
solution of this integral is not known. 
 
3.2 The Approximated MMSE (AMMSE) Detector 
In this paragraph we introduce a reduced complexity 
MMSE-like detector. An approximation of the MMSE 
detector in fading channels can be obtained if the 
detector is made independent of the instantaneous 
channel gain, with the same fashion of the precombining 
LMMSE detector of [9] in multipath fading channels. 
Accordingly, we can replace the matrix M in (13), that 
depends on the instantaneous amplitudes kAβ , with a 
matrix X that depends only on the average amplitudes 

kA  (because 1}{ 2 =βE ). As a consequence of this 
modification, the MMSE detector (12) becomes the 
AMMSE detector ][lka , as expressed by (18) 

                  ( )1

 : , 
[ ] [ ]k k
l lψ −=a CX A   , (18) 

                      122 )( −−+= ARX σ . (19) 

 It is interesting to notice that when the fading gain is 
very high, i.e. 222 σβ >>kA , the MMSE detector is 



similar to the decorrelator detector, since (13) reduces to 
1−≈ RM . Indeed, in this situation, the thermal noise 

power is very small and consequently only the MAI 
affects the BER performance. Hence the MMSE 
detector has to counteract more MAI than noise. On the 
other hand, when the fading gain is small, i.e. 

222 σβ <<kA , the MMSE detector is similar to the 
conventional detector (matched filter), because (13) 
reduces to 222 AM βσ −≈ , and consequently ][lkm  in 
(14) tends to k , : )(C  up to a scalar factor. Indeed, when 
the thermal noise power is high, the MMSE detector 
suppresses more noise than MAI. On the contrary, since 
the matrix X does not depend on the instantaneous 
channel gain β , the AMMSE detector (18) tries to 
suppress the same amount of MAI and noise for all the 
β  values, disregarding that the MAI only is significant 
when 222 σβ >>kA  and, on the contrary, the noise only 
is meaningful when 222 σβ <<kA . Therefore, the bit-
error rate of the AMMSE detector will be higher than 
the one of the ideal MMSE receiver. As a consequence, 
the bit-error probability of the AMMSE receiver is an 
upper bound on the bit-error probability of the MMSE 
detector. 
 The performance-complexity trade-off is evident by 
comparing the MMSE detector and the AMMSE one. 
Indeed the AMMSE detector in (18) does not require 
any inverse matrix update, being matrix X in (19) 
constant in time. On the other hand, the MMSE detector 
in (12) has a higher computational complexity, because 
the matrix M in (13) must be updated when β  changes. 
 
4. UPPER BOUND EVALUATION 
In the following, we derive the upper bound for the 
MMSE bit-error probability in Rayleigh fading channel. 
As stated in section 3, this bound is the probability of 
error of the AMMSE detector. 
 
4.1 Probability of Error of the AMMSE Detector 
In order to obtain the AMMSE bit-error probability, we 
use the Gaussian approximation of the residual MAI, 
which holds true for all the linear detectors [3]. As a 
consequence, the AMMSE bit-error probability 
conditioned to the knowledge of β  has the same 
expression of (16), where the new matrix X replaces the 
β -dependent matrix M as expressed by 
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Consequently, the average BER is 
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where 2µ  and 2λ , defined in (22), are the average 
signal-to-noise ratio and the average residual interfer-
ence-to-noise ratio for the decision variable 1( )b l , 
respectively. 
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By inserting in (21) both )2/erfc(5.0)( xxQ ⋅=  and 
])22[( / 2/122λββµ +=y , we obtain 
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By integrating (23) by parts it follows that 
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and substituting 222 2 yt λµ −=  in (24) it is easy to 
obtain 
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By using the Taylor series expansion of the function 
) )2/( exp( 2λt , (25) becomes 
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The integral in (26) is in the same form of the integral 
3.471.2 in [10], hence we obtain 
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where  ( 1) / 2 , ( 1) / 2 ( )k kW x− + +  is the confluent hyper-
geometric Whittaker W function [11] of order -(k+1)/2 , 
(k+1)/2. 
 The solution (27) to the integral (21) can also be 
expressed in function of the confluent hypergeometric 
functions U and 02 F  by means of the relations 13.1.33 
and 13.1.10 in [11] 
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which lead to the expressions 
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 We have to point out that the solution (27), (30) or 
(31) of the integral (21) could be useful also for the 
performance evaluation of other communication systems 
(in Rayleigh fading channels) impaired by some 
transmitter generated noise, provided that this 
interference can be modeled as Gaussian at the decision 
variable. Indeed, when the interference is generated at 
the transmitter, the interference-to-noise ratio 2λ  is 
attenuated by the same 2β  factor of the signal-to-noise 
ratio 2µ . An example of this situation could be the 
nonlinear distortion noise generated by a High Power 
Amplifier (HPA) in Orthogonal Frequency Division 
Multiplexing (OFDM) systems that use a BPSK or a 
QPSK data mapping. As shown in [12], the nonlinear 
noise can be modeled, for practical input power back-off 
values, as a Gaussian noise, and consequently the 
equation (27) can be used in order to evaluate the 
OFDM performance in frequency-selective Rayleigh 
fading channels. Indeed, the OFDM technique converts 
a frequency-selective fading channel in a number of 
parallel frequency-flat fading channels, each one 
associated to a single sub-carrier. 
 
5. SIMULATION RESULTS 
In this section, some computer simulation results are 
presented and discussed. Different situations are 
considered, in order to understand a) how much the 
upper bound is close to the BER of the MMSE detector 
and b) how much this upper bound is apart from the 
decorrelator BER curve. 
 Fig. 1 shows the BER performance of the user of 
interest as function of the number of active users K. It is 
supposed that the base station transmits each user signal 
with the same power. Gold codes with processing gain 

31=N  have been used. The signal-to-noise ratio 
(SNR), defined as 

  )2(SNR 2
AWGN

2
1 σA= , (32) 

is equal to 20 dB. The BER in fig. 1 shows that no 
appreciable differences exist among the performance of 
the three detectors under investigation (MMSE, 
AMMSE, and decorrelator), except when the loading 
factor NK /  is close to 1. This behavior can be 
explained by the small cross-correlation of the Gold 
codes, which renders the users quasi-orthogonal. Indeed, 
when the users� codes are orthogonal, the matrix R is 
diagonal, and then all the three detectors are scaled 
versions of the same detector (conventional single-user 
detector). 
 Fig. 2 exhibits the BER performance as function of 
the SNR in a situation where all the users are active 
( 31== NK ). Random codes have been used in this 
case. At low SNR, the MMSE upper bound is close to 
the simulated MMSE detector BER, and the AMMSE 
detector significantly outperforms the decorrelator. 
However, at high SNR, the upper bound tends to the 
decorrelator detector BER, with a large power penalty 
with respect to the MMSE performance. Indeed, at high 
SNR, the matrix X in (19) is almost equal to the matrix 

1−R  that appears in the decorrelating detector. As a 
consequence, the AMMSE detector in (18) is nearly 
equal to the decorrelating one and, of course, the 
performance must be nearly the same. On the other 
hand, the MMSE detector outperforms the other ones 
because it takes into account the effect of the β  channel 

gain, suppressing mainly the noise when β  is low (high 
channel attenuation) and mainly the MAI when β  is 
high (i.e. when the channel amplifies the users� signals), 
as observed in section 3. 
 In fig. 3 and fig. 4, random codes with 31== NK  
are used again, but the sets of codes are different from 
the previous one. Moreover, in fig. 4, the power 2

 kA  of 
each interfering user is supposed to be doubled with 
respect to the power 2

1 A  of the user of interest . Figs. 3-
4 clarify that the upper bound is close to the MMSE 
performance for low SNR, and it tends to the 
decorrelator performance at high SNR, as shown in the 
previous situation (fig. 2). 
 Fig. 5 displays the BER performance as function of 
the multiple-access interference (MAI), defined as 

  2
1 

2
 MAI AA k= , (33) 

where it is supposed that the interfering users� signals 
have the same amplitude kA . Since the SNR is not very 
high (SNR = 25 dB), the upper bound is close to the 
MMSE performance. The difference from the 
decorrelator BER tends to increase when the MAI 
decreases, because the decorrelating detector does not 
take into account the increased power of the user of 
interest. 
 
6. SUMMARY AND CONCLUSIONS 
A theoretical upper bound on the MMSE probability of 
error in flat Rayleigh fading downlink channels has been 
derived as the BER of a reduced complexity receiver 
(AMMSE receiver). It has been shown by simulation 
that this upper bound is very close to the ideal MMSE 
error probability at low SNR, while it approaches the 
decorrelator performance at higher SNR. The analytical 
expression of this upper bound could be useful in order 
to evaluate the BER performance of other system (such 
as OFDM systems) impaired by transmitter induced 
distortions that appear as Gaussian at the decision 
variable. 
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Figure 1: BER vs. number of active users. Gold codes, 

N = 31, SNR = 20 dB. 
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Figure 2: BER vs. SNR. Random codes, K = N = 31. 
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Figure 3: BER vs. SNR. Random codes, K = N = 31 

(different codes set with respect to Fig.2). 
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Figure 4: BER vs. SNR. Random codes, MAI = 3 dB,   

K = N = 31 (different codes set with respect to Figs 2-3). 
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Figure 5: BER vs. MAI. Random codes, K = N = 31, 

SNR = 25 dB. 
 
 


