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ABSTRACT 
 
Recently, a minimum mean-squared error (MMSE) block linear 
equalizer based on a band LDLH factorization has been proposed 
for equalization of orthogonal frequency-division multiplexing 
(OFDM) systems affected by Doppler spread. In this paper, we 
extend this approach towards two directions. First, we design an 
MMSE block decision-feedback equalizer (DFE) based on the 
band LDLH factorization. Both performance and complexity are 
analyzed. Second, we enhance the performance of the linear 
equalizer by means of receive windows tailored to the band 
LDLH factorization approach. Simulation results show that the 
proposed techniques are effective in reducing the error floor 
caused by the intercarrier interference (ICI). 
 

1. INTRODUCTION 
 
OFDM is an effective technique that converts a time-invariant 
(TI) multipath channel in a set of parallel single-path channels, 
thereby facilitating the equalization [1]. When the channel is 
time-varying (TV), on the other hand, the orthogonality among 
the subcarriers is lost due to the presence of ICI [2][3]. Conse-
quently, OFDM has mainly been adopted for TI channels. How-
ever, the request for communications at high frequency bands in 
high-mobility scenarios has spurred a renewed interest in equali-
zation schemes for OFDM systems subject to significant Doppler 
spread [4]-[9]. 

To tackle this problem, recently, a low-complexity MMSE 
block linear equalizer (BLE) has been proposed in [10]. This 
BLE relies on the assumption that the ICI produced by faraway 
subcarriers can be neglected [6], and exploits a band LDLH fac-
torization algorithm to reduce complexity, which is linear in the 
number of subcarriers [10]. However, the equalizer of [10] still 
has an error floor, mainly caused by the neglected ICI. In this 
paper we present two techniques that reduce this error floor 
while maintaining linear complexity. First, by using the MMSE 
approach of [11][12] we design a block DFE (BDFE) that incor-
porates the band LDLH factorization of [10]. Performance analy-
sis and simulations show that the proposed BDFE outperforms 
the BLE of [10], while preserving the same complexity. 

The second technique we consider herein makes use of 
windowing [13] to reduce the sidelobes of the subcarrier spec-
trum, and hence the ICI. Receive windowing has been previously 

proposed in [9] in order to minimize the neglected ICI. The 
scheme of [9] also adopts an ICI cancellation technique guided 
by an MMSE serial linear equalizer (SLE). In this paper, we 
modify the window design of [9] to consider block linear equali-
zation. Simulation results illustrate that receive windowing for 
BLE is more beneficial than for SLE when no ICI cancellation is 
adopted. 
 

2. OFDM SYSTEM MODEL 
 
We consider an OFDM system with N  subcarriers. Assuming 
time and frequency synchronization, and employing a cyclic 
prefix length L  greater than the maximum delay spread of the 
channel, the OFDM input-output relation for the ith OFDM 
symbol can be expressed by [4]-[9] 

  [ ] [ ] [ ] [ ]i i i i= +z Λ a n , (1) 
where  [ ]iz  is the 1N ×  received vector,   [ ] [ ] Hi i=Λ FH F  is the 
N N×  frequency-domain channel matrix, [ ]iH  is the N N×  

time-domain channel matrix, F is the N N×  unitary FFT ma-
trix,  [ ]ia  is the 1N ×  OFDM symbol that contains the fre-
quency-domain data, and [ ] [ ]i i=n Fv  is the 1N ×  additive 
noise vector in the frequency domain, where [ ]iv  is the corre-
sponding noise vector in the time domain. Assuming that AN  
subcarriers are active and V AN N N= −  are used as frequency 
guard bands, we can write 

V V1  / 2 1  / 2[ ] [   [ ]   ]T T
N Ni i× ×=a 0 a 0 , 

where [ ]ia  is the A 1N ×  data vector. Assuming that the equal-
izer does not make use of the data received on the VN  virtual 
subcarriers, which contain little signal power, and dropping the 
block index i for the sake of simplicity, (1) becomes 
  = +z Λa n , (2) 
where z  and n  are A 1N ×  vectors obtained by selecting the 
middle part of [ ]iz  and [ ]in , respectively, and Λ  is the 

A AN N×  matrix obtained by selecting the central block of  [ ]iΛ . 
Throughout the paper, we assume that the channel matrix is 

known to the receiver. The topic of TV channel estimation, 
though important, is not considered herein and can be found 
elsewhere (see, e.g., [5][14]). 
 

3. BANDED MMSE-BLE 
 
Due to the TV nature of the channel, Λ  in (2) is not diagonal, 
but is nearly banded [6], and each diagonal is associated with a 
discrete Doppler frequency that introduces ICI. Hence, Λ  can 
be approximated by the band matrix B  obtained by selecting the 
main diagonal, the Q  subdiagonals and Q  superdiagonals, of 
Λ . Thus, ( )Q=B Λ Τ! , where !  denotes the Hadamard (ele-

This work was partially supported by the Italian Ministry of Univer-
sity and Research under the project �MC-CDMA: an air interface for the
4th generation of wireless systems.� Geert Leus was supported in part by
NWO-STW under the VIDI program (DTC.6577). 



 

 

ment-wise) product, and ( )QΤ  is a matrix with lower and upper 
bandwidth Q  [15] and all ones within its band. This approxima-
tion has been exploited in [10] to design a low-complexity 
MMSE-BLE, as expressed by 
 MMSE-BLE MMSE-BLE=a G z" , (3) 
   

A A

1 1 1 1
MMSE-BLE ( ) ( )H H H H

N Nγ γ− − − −= + = +G B BB I I B B B , (4) 
where the SNR 2 2/a nγ σ σ=  is assumed known to the receiver. 
By exploiting a band LDLH factorization of the band matrix 

A

1H
Nγ −= +M BB I"  (or equivalently of 

A

1 H
Nγ −= +M I B B ) the 

MMSE-BLE (3) requires approximately 2
A(8 22 4)Q Q N+ +  

complex operations [10]. The bandwidth parameter Q  can be 
chosen to trade off performance for complexity. Taking into 
account the rule of thumb D / 1fQ f ≥ ∆ +   in [9], reasonable 
choices lie between 1Q =  and 4Q = . Since AQ N<< , the 
computational complexity of the banded MMSE-BLE (3)-(4) is 

A( )O N , i.e., significantly smaller than for other linear MMSE 
equalizers previously proposed, whose complexity is quadratic 
[8] or even cubic [7] in the number of subcarriers. In addition, as 
shown in [10], the complexity of the MMSE-BLE (5) is lower 
than that of the MMSE-SLE used in [9] to initialize an iterative 
ICI cancellation technique. We will now consider two ways to 
improve the performance of the banded MMSE-BLE. 
 

4. BANDED MMSE-BDFE 
 
4.1. Equalizer Design 
 
In this section, we design a BDFE that exploits the low complex-
ity offered by the band LDLH factorization algorithm of [10]. To 
design the feedforward filter FF  and the feedback filter BF  (see 
Fig. 1), we adopt the MMSE approach of [11]. This approach 
minimizes the quantity tr( )MSE = eeR , where  { }HE=xyR xy  
and  = −e a a"  (Fig. 1). We also impose the constraint that BF  is 
strictly upper triangular, so that the feedback process can be 
performed by successive cancellation [12]. 

By the standard assumption of correct past decisions, i.e., 
� =a a , the error vector can be expressed by 

AF B( )N= − +e F z F I a . By the orthogonality principle, it holds 
A AN N×=ezR 0 , which leads to [11][12] 

   
A A A

1 1 1
F B B( ) ( ) ( )H H

N N Nγ− − −= + = + +az zzF F I R R F I Λ ΛΛ I . (6) 
We now apply the band approximation ≈Λ B , which by (4) 
leads to 
 

AF B MMSE-BLE( )N= +F F I G . (7) 
This result points out that the feedforward filter is the cascade of 
the low-complexity MMSE-BLE MMSE-BLEG , and an upper trian-
gular matrix 

AB N+F I  with unit diagonal. To design BF , we 
observe that eeR  can be expressed as 

A A

1
B B( )( )( )H H

N N
−= + − +ee aa az zz azR F I R R R R F I . After some calcula-

tions that also involve the matrix inversion lemma, we obtain 
 

A A A

2 1 1
B B( )( ) ( )H H

n N N Nσ γ − −= + + +eeR F I I Λ Λ F I . (8) 
To exploit the computational advantages given by the LDLH 
factorization, we make the band approximation H H≈Λ Λ B B , 
thus obtaining 
 

A A A

2 1 1
B B( )( ) ( )H H

n N N Nσ γ − −= + + +eeR F I I B B F I . (9) 
Hence, tr( )eeR  can be minimized by using the LDLH factoriza-
tion of 

A

1 H
Nγ −= +M I B B , expressed by H=M LDL , and setting 

 
AB

H
N= −F L I . (10) 

By (10), (7), (4), and 
A

1 H H
Nγ −= + =M I B B LDL , we obtain 

 1 1 1
F MMSE-BLE

H H H H− − −= = =F L G L M B D L B . (11) 
Since B  is banded, L  is lower triangular and banded, and D  is 
diagonal, the banded MMSE-BDFE is characterized by a very 
low complexity, as detailed in the following subsection. 
 
4.2. Complexity Analysis 
 
We now compute the number of complex operations necessary 
to perform the proposed banded BDFE. By means of (10) and 
(11), the soft output of the BDFE, expressed by F B �= −a F z F a" , 
can be rewritten as 
 

A

1 1 �( )H H
N

− −= − −a D L B z L I a" . (12) 
Since B  is banded, we need A(2 1)Q N+  complex multiplica-
tions (CM) and A2QN  complex additions (CA) to obtain 

H=y B z . The matrices L  and D  are obtained by band LDLH 
factorization of M . From [10], 2

A(2 3 1)Q Q N+ +  CM and 
2

A(2 1)Q Q N+ +  CA are necessary to obtain M . In addition, by 
the band LDLH factorization algorithm of [10], 2

A(2 3 )Q Q N+  
CM, 2

A(2 )Q Q N+  CA, and A2QN  complex divisions (CD) are 
required to obtain L  and D . Then, 1 1H− −= =x L B z L y  can be 
obtained by solving the band triangular system =Lx y , which 
requires A2QN  CM and A2QN CA [15], while 

1 1 1H− − −=D L B z D x  requires AN  CD. To perform 
A

�( )H
N−L I a , 

A2QN  CM and A(2 1)Q N−  CA are required. Moreover, AN  
CA are necessary to perform the subtraction between 

1 1 H− −D L B z  and 
A

�( )H
N−L I a . As a result, the proposed BDFE 

requires approximately 2
A(4 12 2)Q Q N+ +  CM, 

2
A(4 8 1)Q Q N+ +  CA, and A(2 1)Q N+  CD, for a total of 

2
A(8 22 4)Q Q N+ +  complex operations. 

It is interesting to observe that, thanks to the banded ap-
proach, the proposed BDFE is characterized by the same com-
plexity of the BLE [10], which is linear in the number of subcar-
riers. Therefore, the proposed banded BDFE is less complex 
than for other non-banded DFE schemes. Just to consider a few, 
the serial DFE [8] has quadratic complexity, while the complex-
ity of the V-BLAST-like successive detection [7] is 4

A( )O N . 
 
4.3. Performance Analysis 
 
In this subsection we compare the mean-squared error (MSE) 
performance of the banded BDFE with that of the banded BLE 
[10]. By (9) and (10), it is easy to verify that 
 2 1

BDFE tr( ) tr( )H
nMSE σ −= =eeR L M L  (13) 

                   
A

2 1 2 1
,

1
tr( ) [ ]

N

n n i i
i

σ σ− −

=

= = ∑D D . (14) 

Moreover, the MMSE-BLE can be obtained from the MMSE-
BDFE by setting the feedback filter to zero. Thus, from (9) with 

A AB N N×=F 0 , we obtain 
    

A
2 1 2 1

BLE ,
1

tr( ) tr( ) [ ]
N

n n i i
i

MSE σ σ− −

=

= = = ∑eeR M M  (15) 

                 
A A

2 1 1 1
, , ,

1 1
[( ) ] [ ] [ ]

N N
H

n i j j j j i
i j

σ − − −

= =

= ∑∑ L D L  (16) 

                 
A A A 22 1 2 1 1

, , ,
1 1 1
[ ] [ ] [ ]

N N N

n i i n j j j i
i i j i

σ σ− − −

= = = +

= +∑ ∑∑D D L , (17) 

which is obviously greater than BDFEMSE  in (13)-(14). Hence, 
we expect that the bit error rate (BER) of the proposed BDFE 



 

 

will be lower than that of the BLE. This fact will be confirmed 
later by simulations. 
 

5. BANDED MMSE-BLE WITH WINDOWING 
 
Although the BDFE is characterized by improved performance 
with respect to the BLE, we still expect a BER floor, due to the 
band approximation of the channel matrix. The aim of this sec-
tion is to investigate a time-domain windowing technique [9] 
that allows for a reduction of the band approximation error. Due 
to the lack of space, we will consider window designs for linear 
equalizers only. 

Let us revisit the system model of (1). By applying an 
1N ×  time-domain window w  at the receiver before the FFT, 

the received vector can be expressed by [9] 
         W W W W W[ ] [ ] [ ] [ ] [ ] [ ] [ ]i i i i i i i= + = +z Λ a n C Λ a C n  (18) 
where  W W[ ] [ ] Hi i=Λ F∆ H F  is the frequency-domain windowed 
channel matrix, with W diag( )=∆ w , W[ ] [ ]i i=n F∆ v  is the win-
dowed noise, and W W

H=C F∆ F  is the circulant matrix that 
represents the windowing operation in the frequency domain. By 
neglecting the data received on the guard bands, we have 
 W W W= +z Λ a C n , (19) 
where Wz , WΛ , and WC  are the middle blocks of Wz , WΛ , 
and WC , respectively, with size A 1N × , A AN N× , and 

AN N× , respectively. From the comparison between (19) and 
(2), it is clear that the main difference is the noise coloring pro-
duced by the windowing operation. Hence, by the band ap-
proximation ( )

W W W
Q≈ =Λ B Λ Τ! , the MMSE-BLE becomes 

 W W W=a G z" , (20) 
 1 1

W W W W W W( )H H Hγ − −= +G B B B C C . (21) 

 
5.1. Window Design 
 
Our goal is to design a receive window with two features: 
(a) The approximation W W≈Λ B  should be as good as possi-

ble, and possibly better than the approximation ≈Λ B . This 
would reduce the residual ICI of the MMSE-BLE. 

(b) The noise covariance matrix W W
HC C  in (21) should be 

banded, so that the equalization can be performed by band 
LDLH factorization of 1

W W W W W
H Hγ −= +M B B C C" . 

We point out that, without the band approximation, the applica-
tion of a time-domain window at the receiver does not change 
the MSE of the MMSE-BLE. This is why we adopt the minimum 
band approximation error (MBAE) criterion (a), which can be 
mathematically expressed as follows: Choose w  that minimizes 

2
W{|| || }E E , where W W W= −E Λ B  and || ||⋅  is the Frobenius 

norm, subject to the energy constraint 2
Wtr( ) N=∆ . (Equiva-

lently, 2
W{|| || }E B  can be maximized subject to the same con-

straint.) Note that this criterion is similar to the max Average-
SINR criterion of [9]. Indeed, also in [9] the goal is to make the 
channel matrix more banded, in order to facilitate an iterative ICI 
cancellation receiver. Differently, in our case, we want to exploit 
the band LDLH factorization, and hence we also require the ma-
trix W W

HC C  in (21) to be banded. Since the A AN N×  matrix 
W W

HC C  is the middle block of the N N×  matrix 
W W W W

H H H=C C F∆ ∆ F , we impose the following sum-of-
exponentials (SOE) constraint: The elements of the window w  

should satisfy 

 [ ] exp( 2 / )
Q

n q
q Q

b j qn Nπ
=−

= ∑w . (22) 

Indeed, when w  is a sum of 2 1Q +  complex exponentials, the 
diagonal of W W

H∆ ∆  can be expressed as the sum of 4 1Q +  ex-
ponentials, and consequently, by the properties of the FFT ma-
trix, W W

H HF∆ ∆ F  is exactly banded with lower and upper band-
width 2Q . Obviously, the class of SOE windows includes some 
common cosine-based windows such as Hamming, Hann, and 
Blackman. The SOE constraint (22) can also be expressed by 
 =w Fb" , (23) 
where            1 0 1[ , ... , , , , ..., ]N Q N QN − −=F f f f f f"  is obtained from the 
columns { }if  of the unitary IFFT matrix HF , and 

[   ]T
Q Qb b−=b #  is a vector of size 2 1Q +  that contains the 

design parameters. 
By applying the MBAE criterion, by the appendix of [9], 

we obtain 
 2

W{|| || } ( )HE =B w Ρ A w! , (24) 
where { }HE=Ρ HH  contains the time-domain autocorrelation 
function of the channel, while A  is defined as 

 ,
sin( (2 1)( ) / )[ ]

sin( ( ) / )m n
Q n m N

N n m N
π

π
+ −=

−
A . (25) 

By maximizing (24) with the SOE constraint (23), the window 
parameters in b  are obtained by the eigenvector that corre-
sponds to the largest eigenvalue of ( )HF Ρ A F" "! . Note that this 
maximization leads to q qb b∗

−= , and consequently the MBAE-
SOE window is real and symmetric. 

We remark that the window design depends not only on the 
selected Q , but also on the time-domain autocorrelation func-
tion of the channel contained in Ρ , and hence on the maximum 
Doppler frequency Df . Therefore, even if we assume a specific 
Doppler spectrum (e.g., Jakes), the designed window will be 
different for each ( , )Df Q . Anyway, we will show that for rea-
sonable values of Df  the designed window does not change so 
much. Consequently, a small set of windows can be designed 
and stored at the receiver, and chosen depending on ( , )Df Q . 
 
5.2. Computational Complexity 
 
In this subsection we show that the windowing operation pro-
duces a minimal increase in terms of computational complexity. 
In this computation, we neglect the complexity of the window 
design, which can be performed offline. For the same reason, we 
also neglect the computation of W W

HC C . 
Since W W

HC C  is circulant, its submatrix W W
HC C  contains at 

most N  different values. Moreover, due to the SOE constraint, 
only 4 1Q +  entries are different from zero. Consequently, since 

W W
HC C  is Hermitian, we need 2 1Q +  CM to obtain 1

W W
Hγ − C C . 

Furthermore, approximately A(2 1)Q N+  CA are required to sum 
1

W W
Hγ − C C  with W W

HB B , which is also Hermitian. In the absence 
of windowing, only AN  CA were necessary: Hence, A2QN  
extra CA are required. In addition, N  extra CM are needed to 
obtain W∆ H  in WΛ . We do not consider the complexity in-
volved in the FFT operation, which should be performed also in 
the absence of windowing. As a result, the complexity increase 
of the banded MMSE-BLE due to windowing is approximately 

A(2 1)Q N+  complex operations, for a total of 
2

A(8 24 5)Q Q N+ +  complex operations. 



 

 

 
6. SIMULATION RESULTS 

 
In this section we compare by simulations the BER performance 
of the proposed techniques with that of the MMSE-BLE of [10], 
in order to understand the performance gain given by BDFE and 
by windowing. We consider an OFDM system with 128N = , 

A 96N = , cyclic prefix 8L = , and QPSK modulation. We as-
sume Rayleigh fading channels, an exponential power delay 
profile, and a Jakes� Doppler spectrum. 

Fig. 2 illustrates the BER performance of the BDFE for dif-
ferent values of Q  when D / 0.15ff ∆ = . We remark that this 
value represents a high Doppler spread condition, since it corre-
sponds to a mobile speed 324V =  Km/h for a carrier frequency 

C 10f =  GHz and a subcarrier spacing 20f∆ =  kHz. From   
Fig. 2, we deduce that the performance improvement produced 
by the BDFE tends to increase for high values of Q . We also 
underline that the banded BDFE still has an error floor caused 
by the band approximation. 

Fig. 3 shows the results of the MBAE-SOE window design 
when 1Q =  for different values of D / ff ∆ . In this case, since 

1Q = , there is a single amplitude parameter to be designed, 
expressed in Fig. 3 as the ratio 1 02 | | /b b . It is evident that for a 
large range of Doppler spreads the optimum ratio is close to the 
value 0.852, which is the ratio given by the Hamming window 
[13]. However, for very high Doppler spreads, the optimum ratio 
tends to decrease, i.e., more energy should be allocated to the 
cosine component. Fig. 4 presents the BER of the MMSE-BLE 
with SOE windowing when 1Q =  and D / 0.15ff ∆ = . The best 
performance is obtained for the ratio 1 02 | | / 0.844b b =  given by 
the MBAE-SOE design. It should be pointed out that also other 
suboptimum SOE windows outperform the rectangular window 
(i.e., the case of no windowing), which can be considered as a 
degenerated SOE window with ratio 1 02 | | /b b  equal to zero. 

Fig. 5 exhibits the BER for some linear equalizers with 
windowing when 2Q =  and D / 0.15ff ∆ = . As far as the BLE 
is concerned, the Hamming window, which is near-optimum for 

1Q = , outperforms the rectangular window. Anyway, the BER 
performance of the BLE with MBAE-SOE window is even bet-
ter, thus confirming the goodness of our window design. Among 
the BLE approaches, the non-banded MMSE-BLE of [7] has the 
lowest BER, but its computational complexity is cubic instead of 
linear in the number of subcarriers. Fig. 5 also displays the BER 
of some SLEs, with and without windowing, obtained from [8] 
and [9]. In the SLE case, windowing is less effective than for the 
BLE: The Hamming window is slightly worse than the rectangu-
lar window, and the Schniter window [9] is even worse. This 
indicates that for the SLEs windowing alone is not effective and 
should be coupled with iterative ICI cancellation techniques as 
in [9]. 

It is also worth noting that the proposed banded BLE with 
MBAE-SOE window outperforms the non-banded SLE of [8], 
which has the lowest BER among the SLE approaches. In addi-
tion, the proposed banded BLE with MBAE-SOE window has 
linear complexity in the number of subcarriers, whereas the non-
banded SLE of [8] has quadratic complexity. 

It is also interesting to observe that the application of 
MBAE-SOE windowing allows for a complexity reduction by 
simply reducing the parameter Q , without performance penalty. 
Indeed, by comparing Fig. 4 with Fig. 5, it is evident that the 
BLE with 1Q =  and MBAE-SOE windowing (i.e., that with 

1 02 | | / 0.844b b =  in Fig. 4) outperforms the BLE with 2Q =  
without windowing (i.e., that identified by rectangular window 
in Fig. 5). Besides, the complexity of the BLE with 1Q =  and 
windowing is roughly 46% of the complexity of the BLE with 

2Q =  without windowing. 
Fig. 6 depicts the shapes of the windows designed for 
2Q =  and D / 0.15ff ∆ = , used in Fig. 5. It is evident that the 

MBAE-SOE window and the Schniter window are very similar. 
The Schniter window, which is designed without the SOE con-
straint (23), produces an almost-banded noise covariance matrix. 
This means that the SOE constraint (23) does not exclude good 
windows. Moreover, it is interesting to note that for 2Q =  both 
the Schniter window and the MBAE-SOE window are very simi-
lar to the Blackman window [13]. We also remember that for 

1Q =  the MBAE-SOE window and the Schniter window are 
similar to the Hamming window (at least for reasonable values 
of normalized Doppler spread). Although the Hamming and 
Blackman windows have been derived in a different context, we 
feel that this is not a merely coincidence. Indeed, many common 
windows, such as Hamming and Blackman, have been derived 
with the purpose of reducing the spectral sidelobes of the Fourier 
transform of the window [13]. Similarly, in our case, we want to 
mitigate the ICI outside the band of the channel matrix, and this 
ICI is caused by the spectral sidelobes of the Fourier transform 
of the window. However, in our scenario, the window design is 
also dependent on other factors, such as the Doppler spectrum 
and the maximum Doppler frequency. 
 

7. CONCLUSIONS 
 
In this paper, we have considered two techniques that reduce the 
ICI produced by Doppler spread in OFDM systems. First, we 
have presented an MMSE-BDFE that exploits a low-complexity 
band LDLH factorization algorithm. Second, we have considered 
a receive window design for an MMSE-BLE based on band 
LDLH factorization. Future work will investigate the joint win-
dowing and banded BDFE design, and more advanced equalizers 
that exploit the covariance of the ICI not considered in the band 
approximation. 
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Fig. 1. Structure of the BDFE. 
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Fig. 2. BER comparison between MMSE-BLE and MMSE-BDFE 

( D / 0.15ff ∆ = ). 
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Fig. 3. MBAE-SOE window as a function of the normalized Doppler 

spread ( 1Q = ). 
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Fig. 4. BER of MMSE-BLE with different SOE windows 

( 1Q = , D / 0.15ff ∆ = ). 
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Fig. 5. BER of MMSE-BLE and MMSE-SLE with different windows 

( 2Q = , D / 0.15ff ∆ = ). 
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Fig. 6. Shape of different windows ( 2Q = , D / 0.15ff ∆ = ). 


