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ABSTRACT
In this paper, we deal with channel estimation for Orthogonal
Frequency-Division Multiplexing (OFDM) systems. The channels
are assumed to be Time-Varying (TV) and approximated by a Basis
Expansion Model (BEM). Due to the time-variation, the resulting
channel matrix in the frequency domain is no longer diagonal, but
can be approximated as banded. Based on this band approxima-
tion, we propose a channel estimator that can combat both the addi-
tive noise and the out-of-band interference. Compared to our previ-
ous work, the proposed channel estimator can span multiple OFDM
symbol intervals such that more time-correlation information can be
explored to improve the estimation accuracy.

keywords: OFDM, BEM, time-varying channels, pilot-assisted
modulation.

1. INTRODUCTION

In mobile communications, a high mobile speed causes the carrier
frequency to spread out and leads to Time-Varying (TV) channels.
Basis Expansion Models (BEM) can be used to approximate the
time-variation within a certain observation window. Examples of
such BEMs are the Complex Exponential BEM (CE-BEM) in [1],
the Generalized CE-BEM (GCE-BEM) in [2], the Discrete Prolate
Spheroidal BEM (DPS-BEM) in [3], the Polynomial BEM (P-BEM)
in [4], and the Karhunen-Loeve BEM (KL-BEM) in [5].

Focusing on the estimation of channels that are modeled by a
BEM, we basically only need to estimate the BEM coefficients. [6]
proposes pilot-assisted estimators based on a CE-BEM assumption,
where pilots are clustered in the time-domain to combat the Inter-
Symbol Interference (ISI). Likewise, for OFDM systems, it is also
useful to cluster the pilots in the frequency-domain to combat the
Inter-Carrier Interference (ICI) induced by the Doppler spread [7].
Indeed, as pointed out in [8], most ICI is concentrated in adjacent
subcarriers, which implies that the channel matrix in the frequency-
domain is roughly banded, a situation comparable to the channel in
the time-domain. Based on this (banded channel) observation, [7, 9]
propose channel estimators that also employ clustered pilots in the
frequency-domain, with the difference that [7] relies exclusively on
the CE-BEM and assumes a fixed bandwidth of the channel matrix,
while [9] can be applied to any other BEM, and assumes a flexible
bandwidth, which can be optimized for any situation.

In this paper, we will extend the results from [9] to the case
where multiple OFDM symbols are utilized. This means that not
only the target OFDM symbol but also its neighboring OFDM sym-
bols will be invoked for channel estimation. This is beneficial since
the Doppler-induced time-variation of the channel is not random but
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dictated by a certain statistical model [10]. As a consequence, the
channel gains in the neighboring OFDM intervals can still bear a
strong correlation with those in the target OFDM interval, which
could be helpful to reduce the channel estimator’s variance [11]. To
make use of this correlation information in the context of a BEM, we
need to employ a bigger BEM window to account for several adja-
cent OFDM intervals. By doing so, we can take more pilots into ac-
count without reducing the bandwidth efficiency. On the other hand,
a larger BEM window should entail more basis functions to main-
tain the same modeling capability, which implies that more BEM
coefficients need to be estimated. By simulations, we show that for
a given bandwidth efficiency, increasing the BEM window has an
overall positive effect on estimation performance.

Notation: We use upper (lower) bold face letters to denote ma-
trices (column vectors). (·)T and (·)H represent transpose and com-
plex conjugate transpose (Hermitian), respectively. Ex{·} stands for
the expected value with respect to x. ⊗ represents the Kronecker
product. † represents the pseudo inverse. IN stands for the N × N
identity matrix. 1M×N and 0M×N stand for the M × N all-one
and all-zero matrix, respectively. Further, we use [x]p to indicate
the (p + 1)st element of the vector x, and [X]p,q to indicate the
(p + 1, q + 1)st entry of the matrix X.

2. OFDM SYSTEM AND BEM

...
...

�

��� � � � �	�

��
� � ��

� � � � � ��

�� � � � � �	� diag � ��� �
� � � � � �	�

Ch. Est.
��� ��

��� �������

��� �������

Fig. 1. The transceiver block diagram for channel estimation

Let us consider an OFDM system with N subcarriers with its
transceiver block diagram sketched in Fig. 1. For the nth OFDM
symbol, the information symbols s(n) are first modulated on N sub-
carriers as s(t)(n) = FHs(n), where F stands for the N -point
unitary Discrete Fourier Transform (DFT) matrix with [F]p,q =

1/
√

Nexp(−j2πpq/N). Making abstraction of the digital-to-analog
and analog-to-digital conversions, s(t)(n) is next concatenated by a
cyclic prefix (CP) of length Lcp, sent over the channel, stripped from
the CP, and finally demodulated. The received data stream resulting
from the nth OFDM symbol can be expressed as

y(n) = FH
(t)(n)FH

s(n)+Fn
(t)(n) = H(n)s(n)+n(n), (1)
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where H(t)(n) and H(n) := FH(t)(n)FH denote the channel ma-
trix for the nth OFDM symbol in the time-domain and frequency-
domain, respectively; n(t)(n) and n(n) := Fn(t)(n) represent the
noise in the time-domain and frequency-domain, respectively. Defin-
ing h

(t)
p,l as the time-domain channel gain for the pth time-interval at

the lth lag, we assume the channel is of Finite Impulse Response
(FIR) with order L, i.e., h

(t)
p,l = 0 for l < 0 or l > L. Due to the CP,

H(t)(n) has entris [H(t)(n)]p,q = h
(t)

n(N+Lcp)+p+Lcp,mod(p−q,N).

In this paper, we will focus on estimating the channel corre-
sponding to the specific 0th OFDM symbol. A BEM will be adopted
to model the channel’s variation not only within the 0th OFDM in-
terval, but also its J adjacent OFDM intervals on both sides. Note
that the target OFDM symbol is situated in the middle of the BEM
window, thereby avoiding possible edge effects due to BEM model-
ing. More specifically, by collecting all the channel gains within this
observation window in a (2J + 1)(L + 1)(N + Lcp) × 1 vector:
h(t) := [h(t)T (−J), · · · ,h(t)T (J)]T , with

h
(t)(n) := [h

(t)

n(N+Lcp),0, · · · , h
(t)

n(N+Lcp),L, · · · ,

h
(t)

n(N+Lcp)+N+Lcp−1,0, · · · , h
(t)

n(N+Lcp)+N+Lcp−1,L]T , (2)

we can adopt the BEM approximation h(t) ≈ (B ⊗ IL+1)h, where
B := [b0, · · · ,bQ] is an (2J + 1)(N + Lcp) × (Q + 1) matrix
that collects Q + 1 orthonormal basis functions bq as columns; the
BEM coefficients are collected in the (L + 1)(Q + 1) × 1 vector
h := [h0,0, · · · , h0,L, · · · , hQ,0, · · · , hQ,L]T , with hq,l standing
for the qth BEM coefficient for the lth channel lag, which is obtained
in a Least Squares (LS) sense and shall remain invariant within these
2J + 1 OFDM symbol intervals. With aid of the BEM and assum-
ing that the CP length satisfies Lcp ≥ L, we can express the time-
domain channel matrix H(t)(n) as1 H(t)(n) =

∑Q
q=0 diag{Pnbq}Hc

q ,
where Hc

q is an N×N circulant matrix composed with the qth BEM

coefficients [Hc
q]m,n = h

(t)

q,mod(m−n,N); Pn is the matrix that selects
within the BEM window the N elements corresponding to the nth
OFDM symbol Pn := [0N×(J+n)(N+Lcp)+Lcp

, IN ,0N×(J−n)(N+Lcp)].
By introducing the BEM, (1) becomes

y(n) =

Q
∑

q=0

Dq(n)∆qs(n) + n(n). (3)

In the above equality,

Dq(n) := Fdiag{Pnbq}FH ,

∆q := FH
c
qF

H = diag{FL[hq,0, · · · , hq,L]T },

where FL stands for the first L + 1 columns of the matrix
√

NF.
It is noteworthy that (1) can implicitly include the effect of a

receiver window: H(t)(n) = diag{w}H̃(t)(n), where w is the
adopted window and H̃(t)(n) represents the original channel (see
Fig. 1). Such a receiver window has been recently reported in [12,13]
to improve the performance of low-complexity equalizers that ex-
ploit the banded approximation of the frequency-domain channel
matrix H(n). To approximate such a windowed channel, we dif-
ferentiate between two options in the BEM design. First, if a CE-
BEM is considered, we can just stick to the original design for the
unwindowed case as in [1]. For the other BEMs, it turns out to be
beneficial if we adapt the BEM to the window: more specifically, we

1From now on, we assume the BEM modeling error is negligible.

design B as

B := {w̃}B̃Q, (4)

w̃ := 1(2J+1)×1 ⊗ [0T
Lcp×1,w

T ]T , (5)

where B̃ yields one of the traditional BEM designs presented in [2–
4] and Q is a square matrix to make the columns of B orthonormal.
Note that due to 0Lcp×1 in (5), the channel taps corresponding to the
CP are in effect discarded.

3. DATA MODEL FOR CHANNEL ESTIMATION

Our task is thus to obtain the BEM coefficient estimates collected
in ĥ to recover the time-domain channel related to the 0th OFDM
symbol

(
P0B ⊗ IL+1

)
ĥ.

Pilots are inserted in dedicated subcarriers in each OFDM sym-
bol. They are grouped in M clusters of length P with each cluster
denoted as s

(p)
m (n). Collecting all the pilot clusters in the vector

s(p)(n) := [s
(p)T
0 (n), . . . , s

(p)T
M−1(n)]T , we differentiate them from

the data symbols collected in the vector s(d)(n).
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Fig. 2. Structure of Dq(n).

For such clustered pilots, it is up to the receiver to decide which
of the received samples must be used for channel estimation. To
clarify the notations that will come forth, we plot the structure of
Dq(n) in Fig. 2. Obviously, the columns of Dq(n) are related to
the positions of the pilots and information symbols, which oper-
ate on Dq(n) through the diagonal matrix ∆q . The row positions
are related to the observation samples. For the mth pilot cluster
s
(p)
m (n) = [[s(n)]Pm , . . . , [s(n)]Pm+P−1]

T , where Pm stands for
its begin position, let us consider the following observation samples:

ym(n) := [[y(n)]Pm+Bc , . . . , [y(n)]Pm+P−Bc−1]
T . (6)

Clearly, if Dq(n) were ‘strictly’ banded with 2Bc + 1 non-zero di-
agonals, ym(n) would be the vector of maximal length that exclu-
sively depends on the pilot cluster s

(p)
m (n). In this sense, Bc can

be interpreted as the assumed bandwidth of Dq(n) as suggested in
Fig. 2. However, we must be cautious with this interpretation, be-
cause Dq(n) is not strictly banded in general. Later on, it will be-
come more clear that Bc actually provides a handle on the amount



of out-of-band interference that we want to take into account. Note
that Bc can even be negative, in which case the bandwidth physical
interpretation cannot be directly accounted for.

To formulate the above discussion in mathematical expressions
with notations indicated in Fig. 2, we obtain

ym(n) =

Q
∑

q=0

D
(p)
q,m(n)∆(p)

q s
(p)(n)+

Q
∑

q=0

D
(d)
q,m(n)∆(d)

q s
(d)(n)

︸ ︷︷ ︸

dm(n)

+nm(n),

where D
(p)
q,m(n) is an (P − 2Bc) × MP matrix, representing the

hatched parts of Dq(n) in Fig. 2; ∆
(p)
q is an MP × MP diag-

onal matrix, which is carved out of ∆q corresponding to the pilot-
carrying subcarriers; D(d)

q,m(n) is an (P−2Bc)×(N−MP ) matrix,
representing the shaded parts of Dq(n) in Fig. 2; ∆

(d)
q is an (N −

MP )×(N −MP ) diagonal matrix, which is carved out of ∆q cor-
responding to the information-carrying subcarriers; finally, nm(n)
stands for the noise related to ym(n). In the above equation, we
have thus uncoupled the effect of the information symbols from the
pilots, and put it in a separate term dm(n). Collecting all the obser-
vation samples in one vector y(p)(n) := [yT

0 (n), · · · ,yT
M−1(n)]T ,

we can easily derive that

y
(p)(n) = P(n)h + d(n) + n

(p)(n), (7)

with

P(n) :=







D
(p)
0,0(n) · · · D

(p)
Q,0(n)

...
. . .

...
D

(p)
0,M−1(n)· · ·D(p)

Q,M−1(n)







(
IQ+1⊗diag{s(p)(n)}F(p)

L

)
.

Here, F
(p)
L standing for the rows of FL corresponding to the po-

sitions of the pilots, and d(n) := [dT
0 (n), · · · ,dT

M−1(n)]T and
n(p)(n) := [nT

0 (n), · · · ,nT
M−1(n)]T . From (7), we observe that

the observation samples are not only contaminated by the additive
noise n(p)(n), but also the out-of-band interference term d(n). The
latter contains also the information h as can be seen

d(n) = D
(d)(n)S(d)(n)h,

D
(d)(n) :=







D
(d)
0,0(n) · · · D

(d)
Q,0(n)

...
. . .

...
D

(d)
0,M−1(n)· · ·D(d)

Q,M−1(n)







,

S
(d)(n) := IQ+1 ⊗

(
diag{s(d)(n)}F(d)

L

)
. (8)

Here, F(d)
L stands for the rows of FL corresponding to the positions

of the information symbols. From its definition, we understand that
d(n) can be made smaller by increasing the value of Bc, which cor-
responds to a more accurate band assumption of the channel matrix.
However, this leads at the same time to less observation samples that
can be fed to the channel estimator, thus a ‘fatter’ P(n) in (7). Op-
timizing Bc will be discussed in the next section.

Finally, since the BEM holds for a total of 2J + 1 OFDM sym-
bols we have

y
(p) = Ph + d + n

(p), (9)

with y(p) := [y(p)T (−J), · · · ,y(p)T (J)]T , P := [PT (−J), · · · ,

P
T (J)]T , and d and n(p) similarly defined as y(p).

4. CHANNEL ESTIMATION AND BC OPTIMIZATION

Below we propose a Least Squares (LS) and a Linear Minimum
Mean Square Error (LMMSE) estimator. For both of them, we as-
sume the channel, data and noise are uncorrelated with each other.
Based on the resulting estimation error, we put forward criteria to
find the optimal Bc.

4.1. The LS Estimator

The LS estimator treats h as a deterministic variable and assumes
further no statistical knowledge about the data or noise. It can be
obtained by seeking

ĥLS = arg min
{h}

‖y(p) − Ph‖2, (10)

which leads to the LS estimator WLS := P
† such that

ĥLS = WLSy
(p) = h + P

†(d + n
(p)).

The LS estimator is robust in cases where knowledge about the chan-
nel and noise statistics is unreliable or even absent. However, it suf-
fers from an inferior performance especially when the interference
is prominent as evident from the resulting MSE:

MSELS := E
h,s(d),n(p){trace{(ĥLS − h)(ĥLS − h)H}

= E
h,s(d),n(p){trace{P†(d + n

(p))(d + n
(p))H

P
†H}}

= trace{P†(Rd + R
(p)
n )P†H}, (11)

where Rd := E
h,s(d){ddH} and R

(p)
n := En{n(p)n(p)H}, whose

computation can be similarly found in [9]. It is not difficult to un-
derstand that MSELS relies heavily on the condition number of P ,
which is in its turn at the choice of Bc.

4.2. The LMMSE Estimator

The LMMSE estimator treats the channel as stochastic. Besides, we
assume that the data symbols are zero-mean white with unit vari-
ance. The LMMSE channel estimates ĥ = Wy(p) are found by
minimizing the following cost function

MSELMMSE := trace{E
h,s(d),n{(Wy

(p) − h)(Wy
(p) − h)H}}

= W
(
PRhP

H + Rd + R
(p)
n + 2<(E

h,s(d){dh
H

P
H})

)
W

H

− 2<
(
RhP

H
W

H + E
h,s(d){hd

H}WH)
+ Rh, (12)

with Rh := Eh{hhH} whose computation is given in [9]. Due to
the assumption that the data symbols are zero-mean and uncorrelated
with the channel, E

h,s(d){dhH
P

H} = 0 and E
h,s(d){hdH} = 0.

Hence, (12) becomes

MSELMMSE = W(PRhP
H+Rd+R

(p)
n )WH−2<(RhP

H
W

H)+Rh,

which, by minimizing with respect to W, leads to

WLMMSE = RhP
H(PRhP

H + Rd + R
(p)
n )−1, (13)

From the above steps, we remark that although in our data model the
out-of-band interference contains the information h itself, its cross-
correlation with other terms can be averaged out and thus the re-
sulting channel estimator still bears the same form as the classical
Wiener filter [14]. By substituting (13) back to (12), we can obtain
the corresponding MSE as

MSELMMSE = trace{(PH(Rd + R
(p)
n )−1

P + R
−1
h )−1}. (14)

which is again a function of Bc.



4.3. Optimization of Bc

First of all, we frame the possible values of Bc to a certain range by
claiming the following lemma (a proof can be found as in [9]):
Lemma 1 Practical values of Bc must satisfy:

P

2
− N

2M
≤ Bc ≤ P

2
− (L + 1)(Q + 1)

2M(2J + 1)
, (15)

as we recall that M is the number of pilot clusters and P is the size
of each pilot cluster.
We optimize Bc within the above range in terms of the MSE ex-
pressions given in (11) and (14), which are defined for the LS and
LMMSE estimators, respectively. However, a closed-form solution
is difficult to find. Fortunately, Lemma 1 implies only a limited ex-
haustive computer search, and the resulting MSE-versus-Bc curves
by simulation exhibit a monotonous trail (see e.g., [9]), although in
an opposite direction for the LS and LMMSE estimator. In partic-
ular for the LS estimator, the maximum Bc = P

2
− (L+1)(Q+1)

2M(2J+1)
is

optimal. Due to its lack of statistical knowledge, the LS estimator
requires the out-of-band interference to be minimized, or in other
words, the channel must be viewed as banded as possible. On the
other hand, the minimum Bc = P

2
− N

2M
is optimal for the LMMSE

estimator. For practical setups (e.g., in Sec.5), this often leads to
a negative Bc, which implies that in some of the observation sam-
ples, the power of the out-of-band interference can even overrule the
power of the pilots. This forms, however, no serious problem to the
LMMSE estimator, which is weaponed with the statistical knowl-
edge to suppress the interference efficiently.

5. NUMERICAL RESULTS

In this section, we test the proposed algorithms for true Jakes’ chan-
nels, using the simulator that is given in [15]. We assume the channel
is an FIR channel with L + 1 = 4 channel taps, each being an inde-
pendent Gaussian random variable with an exponential power decay
σ2

l = e−l/Pl for l ∈ {0, · · · , 3} and Pl = 1.
We consider an OFDM system with N = 128 subcarriers, where

the pilot subcarriers are grouped in M equidistant clusters, each con-
taining P pilot tones. Inside each cluster, we adopt the scheme re-
ferred to as “Frequency-Domain Kronecker Delta” (FDKD) in [7],
where a non-zero pilot is located in the middle of the cluster with
zero guard bands on both sides.

We characterize the TV channel by the Doppler frequency nor-

malized to the subcarrier spacing fD :=
vfc

c
TcN = 0.14, where

v denotes the mobile velocity, fc the carrier frequency, TcN the
OFDM symbol duration, and c the speed of light. We differentiate
between an unwindowed channel and a windowed channel: for the
latter, we adopt the MBAE-SOE window proposed in [12], which
will be a sum of five exponentials. The performance will be com-
pared in terms of the following criterion

MSE-CH := E{‖(P0 ⊗ IL+1)
(
h

(t) − (B ⊗ IL+1)ĥ
)
‖2}. (16)

Note that since we compare to a realistic TV channel, not only the
channel estimator’s MSE but also the BEM’s modeling error are
taken into account in the above criterion.

Throughout the test, we will adopt the GCE-BEM (other BEMs
are also applicable, but will not be examined here due to space re-
strictions), for which the BEM matrix B̃ in (4) has entries [B̃]p,q =
exp{j 2π

(2J+1)NK
p(q − Q

2
)}. Here (2J + 1)NK determines the pe-

riod of the BEM. First of all, by extending the BEM window to mul-
tiple OFDM symbols J > 0 the BEM has a larger period, thereby

avoiding possible edge effects [2]. In addition, by increasing J more
pilots can be taken into account. Increasing the oversampling factor
K has a similar effect as increasing J , but has no influence on the
amount of pilot symbols. Further, by enlarging the BEM period (in-
creasing J or K), the BEM probably needs a larger Q to maintain
the same modeling capability. On the other hand, increasing Q will
increase the number of unknowns, which could have a detrimental
effect on pilot-assisted channel estimation. For the LMMSE estima-
tor, we see that the performance saturates at a certain Q, whereas
for the LS estimator, the perfomance first improves and then deteri-
orates, leading to an optimal Q. We will not study these effects in
depth here, but always take a close to optimal combination of [K, Q]
for every J in the simulations.

Test case 1. The LS estimator. In Fig. 3 and Fig. 4, we plot
the performance of the LS estimators for the unwindowed and win-
dowed channel, respectively. We observe that (i) the estimators based
on three consecutive OFDM symbols (J = 1) have a superior perfor-
mance to the estimators based on a single OFDM symbol (J = 0);
(ii) despite the roughly same amount of overhead, the pilot structure
(M and P ) plays a distinctive role in channel estimation; (iii) the LS
could suffer from an error floor at high SNR due to the out-of-band
interference, which can be better combatted by basing the LS esti-
mator on multiple OFDM symbols and/or impose the MBAE-SOE
window.

Test case 2. The LMMSE estimator. In Fig. 5 and Fig. 6, we
plot the performance of the LMMSE estimators for the unwindowed
and windowed channel, respectively. Similar observations as regards
with the LS estimator can be made here as well. Besides, it is obvi-
ous to see that the LMMSE estimator has a better performance than
the LS estimator due to the exploration of the statistical knowledge.

Test case 3 The effect of mismatched statistical knowledge.
The statistical knowledge necessary for the LMMSE estimator can
be inexact in practice (see e.g., [16] though in a different context).
In Fig. 7, we construct an LMMSE estimator based on a fixed as-
sumption fD = 0.14, and compare its performance for a range of
true Doppler frequencies. It loses its precision, especially when the
assumed fD deviates too much from the true value. In Fig. 8, we con-
struct LMMSE estimators that are based on multipath power profiles
assuming Pl = 1 and Pl = ∞, and compare their performance
for a range of multipath power profiles. It can be observed that the
LMMSE estimator has a robust performance by assuming a uniform
power profile, i.e, let Pl = ∞.
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Fig. 3. The LS estimator for unwindowed TV channels.
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Fig. 4. The LS estimator for windowed TV channels.
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