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I. INTRODUCTION 

Orthogonal frequency-division multiplexing (OFDM) is a well established modulation 

scheme, which mainly owes its success to the capability of converting a time-invariant (TI) 

frequency-selective channel in a set of parallel (orthogonal) frequency-flat channels, thus 

simplifying equalization [25]. Conversely, a time-variant (TV) channel destroys the 

orthogonality among OFDM subcarriers, introducing intercarrier interference (ICI) [18][20], 

and therefore making the OFDM BER performance particularly sensitive to Doppler-affected 

channels. Thus, the widespread use of OFDM in several communication standards (e.g. 

DVB-T, 802.11a, 802.16, etc.) and the increasing request for communication capabilities in 

high-mobility environments have recently renewed the interest in OFDM equalizers that are 

able to cope with significant Doppler spreads [2][4][5][8][10][19][21]. Among those, a low-

complexity MMSE block linear equalizer (BLE) has been recently proposed in [19], which, 

similarly to other equalizers, exploits the observation that ICI generated by TV channels is 

mainly induced by adjacent subcarriers [10]. Thus, assuming that the ICI induced by faraway 

subcarriers can be neglected, the BLE in [19] takes advantage of a band LDL factorization 

algorithm to reduce complexity, which turns out to be linear in the number of subcarriers. 

However, the neglected ICI introduces an error floor on the BER performance of the equalizer 

in [19]. 

In this paper we analyze two techniques to reduce this error floor while maintaining linear 

complexity. The first technique we consider takes advantage of receiver windowing [9] to 

reduce the spectral sidelobes of each subcarrier, and hence the ICI. This approach has been 

previously proposed in [21] to minimize the neglected ICI. The scheme of [21] does not only 

rely on receiver windowing, but it also adopts an ICI cancellation technique guided by an 

MMSE serial linear equalizer (SLE). Our approach differs from [21] in two aspects. First, we 

slightly modify the window design of [21] to consider block linear equalization. Second, we 

do not consider ICI cancellation techniques, because this paper is focused on assessing 
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performance of low-complexity one-shot equalizers, which could be possibly employed as the 

first step of any iterative cancellation approach. In this view, we show by simulation results 

that receiver windowing for the BLE is more beneficial than for the SLE when no ICI 

cancellation is adopted. 

The second technique we investigate is based on the MMSE approach of [1] and [23] for 

decision-feedback equalization. Specifically, we incorporate the band LDL factorization of 

[19] in the design of a banded block decision-feedback equalizer (BDFE), and we show by 

performance analysis and simulations that the proposed BDFE outperforms the BLE of [19], 

while preserving exactly the same complexity. In addition, we join receiver windowing and 

decision-feedback equalization, thereby boosting the BER performance while keeping linear 

complexity in the number of subcarriers. 

Actually, the proposed low-complexity equalizers have to be aware of the TV channel in 

order to perform equalization. Thus, in order to prove the usefulness of those equalizers in fast 

TV scenarios, channel estimation as well as its effect on the BER performance, has to be 

considered. Recently, several authors [8][11][16][22] proposed pilot-assisted channel 

estimation techniques. All these techniques model the channel by means of a basis expansion 

model (BEM), in order to minimize the number of parameters to be estimated, while 

preserving accuracy. More specifically, for block transmissions in underspread TV channels 

modeled by a complex exponential (CE) BEM, [16] proved the MSE optimality1 of a time-

domain training with equally-spaced, equally-loaded, and zero-guarded2 pilot symbols. Its 

natural dual in the frequency domain, with equally-spaced, equally-loaded and zero-guarded 

pilot carriers has been considered in [11]. In this paper, we focus on the frequency-domain 

version, because it seems more natural for OFDM block transmissions. Indeed, this choice of 

                                                 

1 Under LMMSE channel estimation for uncorrelated channel taps, but it also holds for LS 
channel estimation, irrespective of the channel correlation. 
2 With zero-guarded pilot symbols we mean pilot symbols that are surrounded by zeros on 
both sides. 
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embedding training in each OFDM block, does not force us to insert pilot-blocks in the time 

domain between OFDM blocks. Furthermore, current OFDM-based standards generally 

employ equally-spaced (not zero-guarded) pilot subcarriers for channel estimation purposes in 

TI environments. Thus, conventional OFDM systems could adopt the proposed strategy with 

minor modifications, and could be employed in fast TV channels. 

We show that the frequency-domain training, coupled with a general BEM, provides 

significantly accurate LS and LMMSE estimates to enable the use of the proposed low-

complexity equalizers, also in scenarios with high Doppler spread. 

The rest of the paper is organized as follows. We consider the OFDM system model in TV 

channels in Section II, while Section III illustrate a BEM-based channel estimation technique. 

We develop the design of banded equalizers and of receiver windowing in Section IV. In 

Section V we comment on simulation results for the BER performance of the proposed 

receivers, with and without channel estimation. Finally, in Section VI, some conclusions are 

drawn. 

 

II. OFDM SYSTEM MODEL 

Firstly, we introduce some basic notations. We use lower (upper) bold face letters to denote 

column vectors (matrices), superscripts ∗ , T , H , and �  to represent complex conjugate, 

transpose, Hermitian, and pseudoinverse operators, respectively. We employ {}E ⋅  to 

represent the statistical expectation, and x    and x    to denote the smallest integer greater 

than or equal to x , and the greatest integer smaller than or equal to x , respectively. M N×0  is 

the M N×  all-zero matrix, NI  is the N N×  identity matrix, ( )iδ  is the Kronecker delta 

function, and || ||⋅  is the Frobenius norm. We use the symbol !  to denote the Hadamard 

(element-wise) product between matrices, and the symbol ⊗  to denote the Kronecker 

product. We define ,[ ]m nA  as the (m,n)th entry of matrix A , [ ]na  as the nth entry of the 



Submitted to EURASIP Journal on Applied Signal Processing, June 2005 � Revised on Jan. 2006 

 4

column vector a , mod( ) Na  as the remainder after division of a  by N , diag( )a  as the 

diagonal matrix with (n,n)th entry equal to [ ]na , and vec( )A  as the vector obtained by 

stacking the columns of matrix A . 

An OFDM system with N  subcarriers and a cyclic prefix of length L  is considered. Using a 

notation similar to [25], the kth transmitted block can be expressed as 

 CP[ ] [ ]Hk k=u T F a , (1) 

where [ ]ku  is a vector of dimension P N L= + , F  is the N N×  unitary fast Fourier 

transform (FFT) matrix, defined by 1/ 2
,[ ] exp( 2 ( 1)( 1) / )m n N j m n Nπ−= − − −F , [ ]ka  is the 

N-dimensional vector that contains the transmitted symbols, and  CP CP[ ]T T T
N=T I I  is the P N×  

matrix that inserts the cyclic prefix, where CPI  contains the last L  rows of the identity matrix 

NI . Assuming that AN  subcarriers are active and V AN N N= −  are used as frequency guard 

bands, we can write 

 
V V1  / 2 1  / 2[ ] [   [ ]   ]T T

N Nk k× ×=a 0 a 0 , (2) 

where [ ]ka  is the A 1N ×  data vector. For simplicity, we assume that the data symbols 

contained in [ ]ka  are drawn from a finite constellation, and are independent and identically 

distributed (i.i.d.), with power 2
aσ . 

After the parallel-to-serial conversion, the signal stream [ 1] [ [ ]]nu kP n k+ − = u  is transmitted 

through a time-varying multipath channel ( , )ch t τ , whose discrete-time equivalent impulse 

response is 

 S S[ , ] ( , )ch n l h nT lT= , (3) 

where S /T T N=  is the sampling period, T  is the useful duration of an OFDM block (i.e., 

without considering the cyclic prefix duration), and 1/f T∆ =  is the subcarrier spacing. 

Throughout the paper, we assume that the channel amplitudes are complex Gaussian 

distributed, giving rise to Rayleigh fading, and that the maximum delay spread is smaller than 



Submitted to EURASIP Journal on Applied Signal Processing, June 2005 � Revised on Jan. 2006 

 5

or equal to the cyclic prefix duration L , i.e., [ , ]h n l  may have non-zero entries only for 

0 l L≤ ≤ . We will also assume a wide-sense stationary uncorrelated scattering (WSSUS) 

model, characterized by 

 * 2{ ( , ) ( , )} ( ) ( )h lE h n l h n m l i R m iσ δ+ + = , (4) 

where all the taps are subject to the same Doppler spectrum, and 2 2(0)l h lRσ σ=  is the average 

power of the l th tap. For instance, the classical Jakes� power spectral density is characterized 

by the Clarke autocorrelation function 0( ) (2 )h DR t J f tπ= , where Df  is the maximum 

Doppler frequency. 

By assuming time and frequency synchronization at the receiver side, the received samples 

can be expressed as  

 
0

[ ] [ , ] [ ] [ ]
L

t
l

x n h n l u n l n n
=

= − +∑ , (5) 

where [ ]tn n  represents the AWGN with average power 2 2{| [ ] | }
tn tE n nσ = . The P  received 

samples relative to the kth OFDM block are grouped in the vector [ ]kx , thus obtaining  

 ( ) ( )
0 1[ ] [ ] [ 1] [ ]k k

tk k k k= + − +x H u H u n , (6) 

where [ [ ]] [ 1]nk x kP n= + −x , and ( )
0
kH  and ( )

1
kH  are P P×  matrices defined by  

 ( )
0

[ , 0] 0 0

[ , ]

0

0 [ 1, ] [ 1, 0]

k

h kP

h kP L L

h kP P L h kP P

+

+ − + −

 
 
 

=  
 
 
  

H

" "

# $ $ #

$ $ #

# $ $

" "

, (7) 

 ( )
1

0 [ , ] [ ,1]

0 [ 1, ]

0 0 0

k

h kP L h kP

h kP L L+ −

 
 
 
 =
 
 
  

H

" "

# $ $ #

$

# $ $ #

" "

. (8) 

By applying the matrix  CP [ ]N L N×=R 0 I  to [ ]kx  in (6), the cyclic prefix (and hence the 

interblock interference) is eliminated, and introducing windowing we obtain, by (1), the 1N ×  

vector 
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 ( )
W CP W W CP[ ] [ ] [ ] [ ]k H

tk k k k= = +y ∆ R x ∆ H F a ∆ R n , (9) 

where ( ) ( )
CP 0 CP

k k=H R H T  is the equivalent N N×  channel matrix in the time domain, 

defined by 

 ( ) ( )
, mod mod[ ] [ 1, ( ) ] [ 1,( ) ]k k

m n N Nh m m n h kP m m n= − − = + − −H , (10) 

and W diag( )=∆ w  is an N N×  diagonal matrix representing a time-domain receiver 

window. For conventional OFDM, which does not employ receiver windowing, W N=∆ I . 

By applying the FFT at the receiver, we obtain W[ ] [ ]k k=z Fy , which by (9) can be 

rearranged as 

 ( ) ( )
W W W W W[ ] [ ] [ ] [ ] [ ]k kk k k k k= + = +z Λ a n C Λ a n , (11) 

where ( ) ( )k k H=Λ FH F  is the Doppler-frequency channel matrix that introduces ICI, 

W W
H=C F∆ F  is the circulant matrix used to possibly reduce the ICI, and 

 W W CP W CP[ ] [ ] [ ]t tk k k= =n F∆ R n C FR n  (12) 

represents the (possibly colored) noise, with covariance matrix expressed by 

W W

2
W W W W{ [ ] [ ] }H H

nE k k σ= =n nR n n C C . Actually, for conventional OFDM, W N=C I , and 

the noise is white with 
W W

2
n Nσ=n nR I . The elements of ( )kΛ  are obtained by the 2D-DFT 

transform of the time-varying channel impulse response, as expressed by 

 
21 1 ( ( 1))( ) ( )

,
0 0

1[ ] [ , ]
N N j qn l pk k N

p q p
n l

h n l e
N

π− − − + −

+
= =

= ∑∑Λ , (13) 

where q  is the discrete Doppler index, and p  is the discrete frequency index. It can be 

observed that the channel frequency response, for each Doppler component, is stored 

diagonally on ( )kΛ . 

From now on, we consider a generic OFDM block, and hence we drop the block index k. Due 

to the TV nature of the channel, Λ  in (11) is not diagonal. However, as shown in [10] for 

relatively-high Doppler spread and in [4] for high Doppler spread, Λ  is nearly banded, and 

each diagonal is associated, by means of (13), with a discrete Doppler frequency that 
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introduces ICI. Hence, Λ  can be approximated by the band matrix B  (Fig. 1), thereby 

neglecting the ICI that comes from faraway subcarriers. We denote with Q  the number of 

subdiagonals and superdiagonals retained from Λ , so that the total bandwidth of B  is 

2 1Q + . Thus, ( )Q=B Λ T! , where ( )QT  is an N N×  Toeplitz matrix with lower and upper 

bandwidth Q  [7] and all ones within its band (see Fig. 1). The integer parameter Q , which 

can be chosen according to some rules of thumb in [21], is very small when compared with 

the number of subcarriers N , e.g., 1 5Q≤ ≤ . 

In the windowed case, the banded approximation is expressed by W W≈Λ B , with 

( )
W W

Q=B Λ T! . Hence, the window design can be tailored to make the channel matrix 

�more banded,� so that   W W|| || || ||− < −Λ B Λ B  [21]. Indeed, it was shown in [21] that 

receiver windowing reduces the band approximation error. In this view, the band 

approximation is even more justified. 

Due the band approximation of the channel W W≈Λ B , the ICI has a finite support. 

Consequently, it is possible to design the transmitted vector a  by partitioning training and 

data in such a way that they will emerge from the channel (almost) orthogonal. Specifically, 

as proposed in [16] for time-domain training, and in [11] for the frequency-domain 

counterpart, we can design the transmitted vector as 

           1 1 1 2 1 1 2 2 1 2 2 1 1 2 1 1[    ]T T T T
U U U U L U L Us s s× × × × + × + ×=a 0 0 d 0 0 d 0 d 0… , (14) 

where ls  represents the lth pilot tone, and ld  is a 1D ×  column vector containing the lth 

portion of the data. By comparing (14) with (2), is it clear that V / 2U N= . The parameter U  

represents the maximum value of Q  that preserves at the receiver the orthogonality between 

data and pilots, in the banded channel. Thus, the choice of U  at the transmitter can be done 

according to the maximum Doppler spread allowed at the receiver. It is interesting to observe 

that the transmitted vector in (14) contains equispaced pilots, which is an optimal choice also 

in channels that are not doubly-selective [24]. Specifically, for 0U = , the pilot pattern of (14) 
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reduces to the optimal pilot placement for OFDM in TI frequency-selective channels [17]. 

 

III. PILOT-AIDED CHANNEL ESTIMATION 

Among the possible channel estimation techniques, training-based techniques seem preferable 

in time-varying environments, because the channel has to be estimated within a single block. 

For instance, pilot-aided channel estimation techniques for block transmissions over doubly-

selective channels have been proposed and analyzed in [8][11][16][22]. A common 

characteristic of all these approaches is the parsimonious modeling of the TV channel by a 

limited number of parameters that can capture the time-variation of the channel within one 

transmitted data block. The basic idea is to express each TV channel tap as a linear 

combination of deterministic time-varying functions defined over a limited time span. Hence, 

the time variability of each channel tap is captured by a limited number of coefficients. This 

approach is known in the literature as the basis expansion model (BEM), and further details 

can be found in [6][15]. 

The evolution of each channel tap in the time domain during the considered OFDM block is 

stored diagonally in the matrix H , as summarized by (10), or in the equivalent windowed 

channel matrix W W=H ∆ H . More precisely, the lth tap evolution is contained in the vector 

W[ [0, ], [1, ], , [ 1, ]]T
l h l h l h N l= −h ∆ … , where [ , ]h n l  represents the lth discrete-time channel 

path at time n . The BEM expresses each channel tap vector lh  as 

 0 1 ,0 ,1 ,[ , , , ][ , , , ]T
l l l lP l Pη η η= =h Ξη ξ ξ ξ… … , (15) 

where pξ  represents the ( 1)p + th deterministic base of size 1N × , which is the same for all 

taps and all OFDM blocks, ,l pη  is the ( 1)p + th stochastic parameter for the ( 1)l + th tap 

during the considered OFDM block, and 1P +  is the number of basis functions. Since the 

channel has been modeled by the BEM, the possibly windowed channel matrix WH  can be 
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expressed as 

 W ,
0 0 0

diag( ) diag( )
L L P

l l l p p l
l l p

η
= = =

= =∑ ∑∑H h Z ξ Z  (16) 

where lZ  represents the N N×  circulant shift matrix with ones in the lth lower diagonal (i.e., 

mod,( )[ ] 1
Nl n n l− =Z ) and zero elsewhere. Clearly, lZ  represents the lth delay in the lag domain. 

Consequently, 

 W W , , ,
0 0 0 0

( )
L P L P

H
l p p l l p l p N

l p l p
η η

= = = =

= = = = ⊗∑∑ ∑∑Λ FH F X D Γ Γ η I , (17) 

where diag( ) H
p p=X F ξ F  is a circulant matrix with circulant vector 1/ 2

pN − Fξ , which 

represents the discrete spectrum of the ( 1)p + th basis function, diag( )H
l l l= =D FZ F f  is a 

diagonal matrix containing the lth discrete frequency vector lf , expressed by 
2 ( 1)

[ ]
j l n

N
l n e

π −
=f , 

, diag( ) H
l p p l p l= =Γ X D F ξ Z F , 0[ , , ]T T T

L=η η η…  contains the ( 1)( 1)L P+ +  BEM 

parameters, and 0,0 1,0 ,00, 1, ,[ , , , , , , , , , ]LP P L P=Γ Γ Γ Γ Γ Γ Γ… … …… … . By (17) and (11), 

assuming a general BEM, the received vector becomes 

 W W W( 1)( 1)( ) ( )N P L+ += ⊗ + = ⊗ +z Γ η I a n Γ I a η n , (18) 

which can be rewritten as  

 ( )
W W= +az Ψ η n  (19) 

where ( )
( 1)( 1)( )P L+ += ⊗aΨ Γ I a  is the data-dependent matrix that couples the channel 

parameters with the received vector. Whatever is the choice for the deterministic basis { }pξ , 

and assuming that the transmitted vector a  can be partitioned as the sum of a known training 

vector s  and an unknown data vector d , that is 

1 1 1 4 2 1 4 1 4 1 1 3[         ]T
U U D U D U D L U Ds s s× × + × + × + + × +=s 0 0 0 0 0…  and = −d a s  (see (14)) , the 

received vector becomes 

 ( )
W W W= + +sz Ψ η Λ d n , (20) 

where ( )
W = dΛ d Ψ η . Now we introduce the (2 1)( 1)U L N+ + ×  matrix SP  obtained by 
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selecting from the N N×  identity matrix only those rows that correspond to the pilot 

symbols, i.e., the rows with indices from (4 1) 1U D l+ + +  to (4 1) 2 1U D l U+ + + + , for 

0,...,l L= , as expressed by 

 

2 1 2 1 2 1

2 1 2 1

S

2 1

2 1 2 1 2 1

U U U

U U

U

U U U

+ + +

+ +

+

+ + +

 
 
 
 =
 
 
  

I 0 0 0 0 0
0 I 0

P
0

0 0 0 0 I 0

"
# # #

# # # # #
# # # # #

"

. (21) 

We obtain 

 S S W S W S W= = + +z P z Φη P Λ d P n  (22) 

where ( )
S= sΦ P Ψ  is a matrix with size (2 1)( 1) ( 1)( 1)U L P L+ + × + + . Note that the pilot 

pattern design in (14) takes advantage of the (almost) banded nature of the channel. Indeed, 

we observe that if WΛ  is exactly banded with Q U≤ , S WP Λ d  in (22) is equal to 

(2 1)( 1) 1U L+ + ×0 , and hence the interference produced by the data is eliminated. However, in 

general WΛ  is not exactly banded, and hence we consider ( )
S W S= = di P Λ d P Ψ η  in (22) as an 

interference term. Consequently, we can estimate the BEM parameters in the least squares 

(LS) sense, as expressed by 

 �
LS S� =η Φ z , (23) 

where the superscript �  denotes pseudoinverse, and 2P U≤ . Alternatively, if the receiver is 

aware of the channel statistics, the channel can be estimated in the linear MMSE (LMMSE) 

sense, as expressed by [13] 

 1 1 1 1
LMMSE S� ( ( ) ) ( )H H− − − −= + + +ii nn ηη ii nnη Φ R R Φ R Φ R R z , (24) 

where 2
S W W S S W W S{ }

t

H H H H
nE σ= =nnR P n n P P C C P  is the covariance matrix of the selected 

windowed noise (which reduces to 2 2
S S (2 1)( 1)t t

H
n n U Lσ σ + += =nnR P P I  for rectangular 

windowing), ( ) ( )
S S

H H= d d
ii ηηR P Ψ R Ψ P  is the covariance matrix of the interference, 

{ }HE=ηηR ηη  is the covariance matrix of the ( 1)( 1)P L+ +  channel parameters, composed 
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by square submatrices { { }}
l j

H
l jE=η ηR η η  of size 1P + . Bearing in mind (15), it is easy to 

show that 
l jη ηR  can be obtained from the knowledge of the channel statistics, as expressed by 

� �{ }
l j

H H
l jE=η ηR Ξ h h Ξ . After estimating the BEM parameter vector η , e.g., by (23) or (24), 

we can recover the channel matrix WΛ  by (17). 

Depending on the chosen basis matrix Ξ , the channel matrix WΛ  obtained by (17) could be 

banded or non-banded. A popular choice for the basis functions is represented by complex 

exponentials (CE) [6], which is also suggested by the banded assumption for the channel 

matrix WΛ . Indeed, for CE with 2P Q= , the pth basis function is p p Q−=ξ f , which 

represents a discrete Doppler frequency shift. Consequently, diag( ) H
p p Q Q p− −= =X F f F Z , 

and (17) becomes 

 
2

W ,
0 0

diag( )
QL

l p Q p l
l p

η −
= =

=∑∑Λ Z f , (25) 

which clearly reveals the banded nature of the channel matrix. However, for the sake of 

generality, other bases that do not lead to a perfectly banded channel matrix could be 

considered. A possibility is the use of discrete prolate spheroidal (DPS) sequences as basis 

functions [26]. Another basis is the polynomial (POL) basis, where [ ] (( 1) / ) p
p n n N= −ξ , 

similarly to that proposed in [3]. A third option is based on generalized complex exponentials 

(GCE), where 2 ( )( 1) /[ ] j p Q n KN
p n e π − −=ξ , which represents a truncated oversampled Fourier 

basis [14]. Also orthonormal and/or windowed versions of these bases are possible. In all 

these cases, except for the CE, the estimated channel matrix W
�Λ  is not perfectly banded. 

However, we have already discussed the nearly banded structure of the true channel matrix. 

Hence, we select only the 2 1Q +  main diagonals of W
�Λ , thus obtaining ( )

W W
�� Q=B Λ T! . 
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IV. BANDED EQUALIZERS 

In this section, we present some low-complexity equalizers obtained by exploiting the band 

approximation of the Doppler-frequency channel matrix. We start by summarizing some 

results derived in [19], where we proposed a banded MMSE block linear equalizer (BLE) 

without considering the potential benefit of receiver windowing. Subsequently, we focus on 

the window design and derive the windowed MMSE-BLE (W-MMSE-BLE). Finally, we 

extend the proposed approach to consider the MMSE-BDFE and the windowed MMSE-

BDFE (W-MMSE-BDFE). 

In our equalizer designs, we assume that the 2U  subcarriers at the edges of the received 

block z  are removed. Indeed, because of the edge guard bands in the transmitted block (14), 

the received block z  contains little transmitted power in its edge subcarriers, which could 

also be affected by adjacent channel interference (ACI). Anyway, similar equalizer designs 

without guard band removal can be obtained with minor modifications. 

As a consequence of the edge guard band removal, we denote by Wz  the A 1N ×  middle 

block of Wz , WΛ  the A AN N×  middle block of WΛ , and ( )
W W

Q=B Λ T! , where ( )QT  is 

an A AN N×  Toeplitz matrix defined like ( )QT . In addition, when no windowing is applied, 

we omit the subscript for the sake of clarity, and hence use z , Λ , and B , instead of Wz , 

WΛ , and WB , respectively. 

 

a) MMSE-BLE 

The band approximation ≈Λ B  has been exploited in [19] to design a low-complexity 

MMSE-BLE, as expressed by 

 MMSE-BLE MMSE-BLE=a G z& , (26) 

 
A A

1 1 1 1
MMSE-BLE ( ) ( )H H H H

N Nγ γ− − − −= + = +G B BB I I B B B , (27) 

where the SNR 2 2/
ta nγ σ σ=  is assumed known to the receiver. By exploiting a band LDL 
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factorization of the band matrix 
A

1
1

H
Nγ −= +M BB I , or equivalently of 

A

1
2

H
Nγ −= +M I B B , the MMSE-BLE (26) requires approximately 2

A(8 22 4)Q Q N+ +  

complex operations [19]. The bandwidth parameter Q  can be chosen to trade off 

performance for complexity. Since AQ N<< , the computational complexity of the banded 

MMSE-BLE (26)-(27) is A( )O N , i.e., significantly smaller than for other linear MMSE 

equalizers previously proposed, whose complexity is quadratic [4] or even cubic [5] in the 

number of subcarriers. In addition, as shown in [19], the complexity of the MMSE-BLE is 

lower than for a non-iterative banded MMSE-SLE, i.e., the MMSE-SLE used to initialize the 

iterative ICI cancellation technique in [21]. 

 

b) BANDED MMSE-BLE WITH WINDOWING 

We now investigate a time-domain windowing technique that makes the channel matrix WΛ  

more banded than Λ . Our aim is to improve the performance of the banded MMSE-BLE by 

reducing the band approximation error. 

It is clear that the main difference with Section III-a is the noise coloring produced by the 

windowing operation, as expressed by (12). By neglecting the edge null subcarriers, (11) can 

be rewritten as  

 W W W= +z Λ a C n
&

, (28) 

where CP t=n FR n , and WC
&

 is the middle block of WC  with size AN N× . Hence, by the 

band approximation ( )
W W W

Q≈ =Λ B Λ T! , the MMSE-BLE becomes 

 W W-MMSE-BLE W=a G z& , (29) 

 1 1
W-MMSE-BLE W W W W W( )H H Hγ − −= +G B B B C C

& &
. (30) 

In this view, we consider the minimum band approximation error (MBAE) sum-of-

exponentials (SOE) window, which is expressed by 
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 2 /[ ]
Q

j qn N
n q

q Q
b e π

=−

= ∑w , (31) 

where the coefficients { }qb  are designed in order to minimize W W|| ||−Λ B . Thanks to the 

SOE constraint, the covariance matrix of the windowed noise is banded with total bandwidth 

4 1Q + . This leads to linear MMSE equalization algorithms characterized by a very low 

complexity, which is linear in the number of subcarriers, as detailed in Section IV-b.2. 

 

b.1) WINDOW DESIGN 

Our goal is to design a receiver window with two features. 

(a) The approximation W W≈Λ B  should be as good as possible, and possibly better than 

the approximation ≈Λ B . This would reduce the residual ICI of the banded MMSE-

BLE. 

(b) The noise covariance matrix W W
HC C

& &
 in (30) should be banded, so that the 

equalization can be performed by band LDL factorization of 

1
3 W W W W

H Hγ −= +M B B C C
& &

. 

We point out that, without the band approximation, the application of a time-domain window 

at the receiver does not change the MSE of the MMSE-BLE. This is why we adopt the 

minimum band approximation error (MBAE) criterion, which can be mathematically 

expressed as follows: Choose w  that minimizes 2
W{|| || }E E , where W W W= −E Λ B , 

subject to the energy constraint 2
Wtr( ) N=∆ . (Equivalently, 2

W{|| || }E B can be maximized 

subject to the same constraint.) Note that this criterion is similar to the max Average-SINR 

criterion of [21]. Indeed, also in [21] the goal is to make the channel matrix more banded, in 

order to facilitate an iterative ICI cancellation receiver. Differently, in our case, we want to 

exploit the band LDL factorization, and hence we also require the matrix W W
HC C

& &
 in (30) to be 

banded. Since the A AN N×  matrix W W
HC C

& &
 is the middle block of the N N×  matrix 
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2
W W W

H H=C C F∆ F , we impose the SOE constraint, i.e., the elements of the window w  should 

satisfy (31). Indeed, when w  is a sum of 2 1Q +  complex exponentials, the diagonal of 2
W∆  

can be expressed as the sum of 4 1Q +  exponentials, and consequently, by the properties of 

the FFT matrix, 2
W

HF∆ F  is exactly banded with lower and upper bandwidth 2Q . Obviously, 

the class of SOE windows includes some common cosine-based windows such as Hamming, 

Hann, and Blackman. The SOE constraint (31) can also be expressed by 

 =w Fb& , (32) 

where            1 0 1[ , ..., , , , ..., ]N Q Q− −=F f f f f f& , and [   ]T
Q Qb b−=b "  is a vector of size 2 1Q +  that 

contains the design parameters. 

By applying the MBAE criterion, by the Appendix of [21], we obtain 

 2
W{|| || } ( )HE =B w R A w!ΗΗΗΗΗΗΗΗ , (33) 

where { }HE=RΗΗΗΗΗΗΗΗ ΗΗΗΗΗΗΗΗ , with ,[ ] [ , ]m n h m n=ΗΗΗΗ , while A  is defined as 

 ,
sin( (2 1)( ) / )[ ]

sin( ( ) / )m n
Q n m N

N n m N
π

π
+ −=

−
A . (34) 

By maximizing (33) with the SOE constraint (32), the window parameters in b  are obtained 

by the eigenvector that corresponds to the largest eigenvalue of ( )HF R A F& &!ΗΗΗΗΗΗΗΗ . Note that 

this maximization leads to q qb b∗
−= , and consequently the MBAE-SOE window is real and 

symmetric. 

We remark that the window design depends not only on the selected Q , but also on the time-

domain channel autocorrelation HHR , and hence on the maximum Doppler frequency Df . 

Therefore, even if we assume a specific Doppler spectrum (e.g., Jakes), the designed window 

will be different for each ( , )Df Q . Anyway, we will show that for reasonable values of Df  the 

designed window does not change so much. Consequently, a small set of window parameters 

can be designed and stored at the receiver, and chosen depending on ( , )Df Q . 
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b.2) COMPUTATIONAL COMPLEXITY 

We show that the windowing operation produces a minimal increase in terms of 

computational complexity. In this computation, we neglect the complexity of the window 

design, which can be performed offline. For the same reason, we also neglect the computation 

of W W
HC C

& &
. 

Since W W
HC C  is circulant, its submatrix W W

HC C
& &

 contains at most N  different values. 

Moreover, due to the SOE constraint, only 4 1Q +  entries are different from zero. 

Consequently, since W W
HC C

& &
 is Hermitian, we need 2 1Q +  complex multiplications (CM) to 

obtain 1
W W

Hγ − C C
& &

. Furthermore, approximately A(2 1)Q N+  complex additions (CA) are 

required to sum 1
W W

Hγ − C C
& &

 with W W
HB B , which is also Hermitian. In the absence of 

windowing, only AN  CA were necessary: Hence, A2QN  extra CA are required. In addition, 

N  extra CM are needed to obtain W∆ H  in WΛ . We do not consider the complexity of the 

FFT, which should be performed also in the absence of windowing. As a result, the 

complexity increase of the banded MMSE-BLE due to windowing is roughly A(2 1)Q N+  

complex operations, for a total of 2
A(8 24 5)Q Q N+ +  complex operations. 

For the SLEs, the complexity increase is nearly equal than for the BLEs. Hence, the W-

MMSE-BLE is less complex than the non-iterative MMSE-SLE with windowing. 

 

c) BANDED MMSE-BDFE 

 

c.1) EQUALIZER DESIGN 

We design a banded BDFE that exploits the low complexity offered by the band LDL 

factorization algorithm of [19]. To design the feedforward filter FF  and the feedback filter BF  

(see Fig. 2), we adopt the MMSE approach of [1]. This approach minimizes the quantity 
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tr( )MSE = eeR , where  { }HE=xyR xy  and  = −e a a&  (Fig. 2). We also impose the constraint 

that BF  is strictly upper triangular, so that the feedback process can be performed by 

successive cancellation [23]. 

By the standard assumption of correct past decisions, i.e., � =a a , the error vector can be 

expressed by 
AF B( )N= − +e F z F I a . By the orthogonality principle, it holds 

A AN N×=ezR 0 , 

which leads to 

 
A A A

1 1 1
F B B( ) ( ) ( )H H

N N Nγ− − −= + = + +az zzF F I R R F I Λ ΛΛ I  (35) 

We now apply the band approximation ≈Λ B , which by (27) leads to 

 
AF B MMSE-BLE( )N= +F F I G . (36) 

This result points out that the feedforward filter is the cascade of the low-complexity MMSE-

BLE MMSE-BLEG , and an upper triangular matrix 
AB N+F I  with unit diagonal. To design BF , 

we observe that eeR  can be expressed as 

 
A A

1
B B( )( )( )H H

N N
−= + − +ee aa az zz azR F I R R R R F I . (37) 

After standard calculations that also involve the matrix inversion lemma, we obtain 

 
A A A

2 1 1
B B( )( ) ( )

t

H H
n N N Nσ γ − −= + + +eeR F I I Λ Λ F I . (38) 

To exploit the computational advantages given by the LDL factorization, we make the band 

approximation H H≈Λ Λ B B , thus obtaining 

 
A A A

2 1 1
B B( )( ) ( )

t

H H
n N N Nσ γ − −= + + +eeR F I I B B F I . (39) 

By using the LDL factorization, 

 
A

1
2 2 2 2

H H
Nγ −= + =M I B B L D L , (40) 

and hence tr( )eeR  can be simply minimized by setting 

 
AB 2

H
N= −F L I , (41) 

which renders eeR  diagonal. By (41), (36), (27), and (40) we obtain 

 1 1 1
F 2 MMSE-BLE 2 2 2 2

H H H H− − −= = =F L G L M B D L B . (42) 

Since B  is banded, 2L  is lower triangular and banded, and 2D  is diagonal, it turns out that 
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the banded MMSE-BDFE is characterized by a very low complexity, as detailed in the 

following. 

 

c.2) COMPLEXITY ANALYSIS 

We now compute the number of complex operations necessary to perform the proposed 

banded MMSE-BDFE. By means of (41) and (42), the soft output of the MMSE-BDFE, 

expressed by F B�= −a F z F a& , can be rewritten as 

 
A

1 1
2 2 2 �( )H H

N
− −= − −a D L B z L I a& . (43) 

Since B  is banded, we need A(2 1)Q N+  CM and A2QN  CA to obtain H=µ B z . The 

matrices 2L  and 2D  are obtained by band LDL factorization of 2M . From [19], 

2
A(2 3 1)Q Q N+ +  CM and 2

A(2 1)Q Q N+ +  CA are necessary to obtain 2M . In addition, 

by the band LDL factorization algorithm of [19], 2
A(2 3 )Q Q N+  CM, 2

A(2 )Q Q N+  CA, 

and A2QN  complex divisions (CD) are required to obtain 2L  and 2D . Then, 

1 1
2 2

H− −= =θ L B z L µ  can be obtained by solving the band triangular system 2 =L θ µ , which 

requires A2QN  CM and A2QN CA [7], while 1 1 1
2 2 2

H− − −=D L B z D θ  requires AN  CD. To 

perform 
A2 �( )H

N−L I a , A2QN  CM and A(2 1)Q N−  CA are required. Moreover, AN  CA are 

necessary to perform the subtraction between 1 1
2 2

H− −D L B z  and 
A2 �( )H

N−L I a . As a result, the 

proposed BDFE requires approximately 2
A(4 12 2)Q Q N+ +  CM, 2

A(4 8 1)Q Q N+ +  CA, 

and A(2 1)Q N+  CD, for a total of 2
A(8 22 4)Q Q N+ +  complex operations. 

It is worth noting that, thanks to the banded approach, the proposed MMSE-BDFE is 

characterized by exactly the same complexity as the MMSE-BLE, which is linear in the 

number of subcarriers. Therefore, the proposed banded MMSE-BDFE is less complex than 

other non-banded DFE schemes. Just to consider a few, the serial DFE [4] has quadratic 

complexity, while the complexity of the V-BLAST-like successive detection [5] is 4
A( )O N . 
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c.3) PERFORMANCE ANALYSIS 

We compare the mean-squared error (MSE) performance of the banded BDFE with the 

banded BLE of [19]. By (39) and (41), it is easy to verify that 

 
A

2 1 2 1 2 1
BDFE 2 2 2 2 2 ,

1

tr( ) tr( ) tr( ) [ ]
t t t

N
H

n n n i i
i

MSE σ σ σ− − −

=

= = = = ∑eeR L M L D D . (44) 

Moreover, the MMSE-BLE can be obtained from the MMSE-BDFE by setting the feedback 

filter to zero. Thus, from (39) with 
A AB N N×=F 0 , we obtain 

 
A

2 1 2 1
BLE 2 2 ,

1

tr( ) tr( ) [ ]
t t

N

n n i i
i

MSE σ σ− −

=

= = = ∑eeR M M  (45) 

           
A A

2 1 1 1
2 , 2 , 2 ,

1 1

[( ) ] [ ] [ ]
t

N N
H

n i j j j j i
i j

σ − − −

= =

= ∑∑ L D L  (46) 

                         
A A A 22 1 2 1 1

2 , 2 , 2 ,
1 1 1

[ ] [ ] [ ]
t t

N N N

n i i n j j j i
i i j i

σ σ− − −

= = = +

= +∑ ∑∑D D L , (47) 

which is obviously greater than BDFEMSE  in (44). Hence, we expect that the bit error rate 

(BER) of the proposed MMSE-BDFE will be lower than for the MMSE-BLE. However, we 

still expect a BER floor, due to the band approximation of the channel matrix. This fact will 

be confirmed later by simulations. 

 

d) BANDED MMSE-BDFE WITH WINDOWING 

In Section IV-b and IV-c, we have presented two low-complexity equalizers that exploit 

either MBAE-SOE windowing or decision-feedback. In this section, we marry banded BDFE 

and MBAE-SOE windowing. 

 

d.1) EQUALIZER DESIGN 

The equalizer design follows the same MMSE approach of Section IV-c, hence we highlight 

the main differences introduced by windowing. In the windowed case, the error vector is 

expressed by 
AF W B( )N= − +e F z F I a , and the orthogonality principle leads to 



Submitted to EURASIP Journal on Applied Signal Processing, June 2005 � Revised on Jan. 2006 

 20

 
A W W W A

1 1 1
F B B W W W W W( ) ( ) ( )H H H

N N γ− − −= + = + +az z zF F I R R F I Λ Λ Λ C C
& &

. (48) 

We can apply W W≈Λ B , thereby obtaining 

 
A A

1 1
F B W-MMSE-BLE B W W W W W( ) ( ) ( )H H H

N N γ − −= + = + +F F I G F I B B B C C
& &

. (49) 

To design BF , we observe that 
A W W W W A

1
B B( )( )( )H H

N N
−= + − +ee aa az z z azR F I R R R R F I . By the 

matrix inversion lemma, we obtain 

 
A A A

2 1 1 1
B W W W W B( )( ( ) ) ( )

t

H H H
n N N Nσ γ − − −= + + +eeR F I I Λ C C Λ F I

& &
. (50) 

We now make the approximation 

 1 1
W W W W W W W W( ) ( )H H H H− −≈Λ C C Λ Λ C C Λ

& && &
, (51) 

where W W
H=Λ FH F

& &
 is the AN N×  middle block of WΛ , and F

&
 is the AN N×  middle 

block of F , thus obtaining 

 
A A A

2 1 1 1
B W W W W B( )( ( ) ) ( )

t

H H H
n N N Nσ γ − − −= + + +eeR F I I Λ C C Λ F I

& &
. (52) 

Note that the approximation (51) is equivalent to the approximation 

W W W W W W W W

1 1H H− −≈az z z az az z z azR R R R R R , i.e., the equality in (51) holds true if we design the 

feedback filter by including the edge guard bands in the correlation matrices. 

Since WC  is circulant, 

                1 1
W W W W W W W W( ) ( )( )( )H H H H H H H H− − −=Λ C C Λ FH ∆ F F∆ ∆ F F∆ HF
& & & &

 

         H H H H H H= = =FH HF FH F FHF Λ Λ
& & & & & &

, (53) 

where Λ
&

 is the AN N×  middle block of the unwindowed channel matrix Λ . Consequently, 

Eq. (52) reduces to 
A A A

2 1 1
B B( )( ) ( )

t

H H
n N N Nσ γ − −= + + +eeR F I I Λ Λ F I

& &
. Henceforth, we can 

exploit the computational advantages given by the LDL factorization algorithm in [19] by 

applying the band approximation H H≈Λ Λ B B
& & & &

, where B
&

 is the AN N×  middle block of B , 

and B  is the banded version of Λ . Consequently, we obtain 

 
A A A

2 1 1
B B( )( ) ( )

t

H H
n N N Nσ γ − −= + + +eeR F I I B B F I

& &
, (54) 

which is formally similar to (39). Hence, tr( )eeR  can be minimized by using the band LDL 

factorization 

 
A

1
4 4 4 4

H H
Nγ −= + =M I B B L D L
& &

, (55) 



Submitted to EURASIP Journal on Applied Signal Processing, June 2005 � Revised on Jan. 2006 

 21

which leads to  

 
AB 4

H
N= −F L I , (56) 

 F 4 W
H=F L G , (57) 

where W-MMSE-BLEG  is expressed by (30). We highlight that also WG  can take advantage from 

a band LDL factorization, as in (55). However, these two band LDL factorizations are applied 

to different matrices, whereas in the unwindowed MMSE-BDFE case they are applied on the 

same matrix 2M  expressed by (40). Consequently, in the windowed case, the complexity 

advantage is smaller than in the unwindowed case, as detailed in Section IV-d.2. 

We also observe that the design of the feedforward and feedback filters does not consider the 

presence of pilot symbols used for channel estimation purposes (see (14)). However, we can 

always reinsert the known pilot symbols when performing the successive cancellation in the 

feedback path. This partially prevents the error propagation, because the pilots are equispaced. 

Alternatively, we can design ( 1)L +  smaller DFEs, each one for a single portion ld  of the 

data in (14). 

 

d.2) COMPLEXITY ANALYSIS 

The performance and complexity analyses of the W-MMSE-BDFE can be obtained similarly 

as those of the unwindowed MMSE-BDFE case. However, the result of the complexity 

analysis turns out to be slightly different. In the following, we use the same approach of 

Section IV-c.2 to evaluate the number of complex operations required by the W-MMSE-

BDFE. By (56) and (57), the soft output of the W-MMSE-BDFE, expressed by 

F W B�= −a F z F a& , can be rewritten as 

 
A4 W W 4 �( )H H

N= − −a L G z L I a& . (58) 

The computation of W WG z  is equivalent to applying the banded W-MMSE-BLE and hence 

requires roughly 2
A(8 24 5)Q Q N+ +  complex operations. The band LDL factorization of 
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4M  needs 2
A(8 10 2)Q Q N+ +  complex operations. To perform 4 W W

HL G z , we need A2QN  

complex multiplies (CM) and A2QN  complex adds (CA). To perform 
A4 �( )H

N−L I a , A2QN  

CM and A(2 1)Q N−  CA are required. Moreover, AN  CA are necessary to perform the 

subtraction between 4 W W
HL G z  and 

A4 �( )H
N−L I a . As a result, the proposed banded W-

MMSE-BDFE requires approximately 2
A(16 42 7)Q Q N+ +  complex operations. Hence, 

with MBAE-SOE windowing, the complexity of the banded W-MMSE-BDFE is nearly 

doubled with respect to the banded W-MMSE-BLE . However, thanks to the banded 

approach, also the complexity of the banded W-MMSE-BDFE is linear in the number of 

subcarriers. 

 

V. SIMULATION RESULTS 

The aim of this section is twofold. First, assuming perfect channel knowledge, we compare 

the BER performance of the proposed equalizers with the MMSE-BLE of [19], in order to 

establish the performance gain obtained by decision-feedback and by windowing. Second, we 

show how the pilot-aided channel estimation of Section III affects the BER performance. 

In the first set of simulations (i.e., with channel knowledge), we consider an OFDM system 

with 128N = , and a unique block with A 96N =  active and contiguous data subcarriers, a 

cyclic prefix with 8L = , and QPSK modulation. We also assume Rayleigh fading channels 

with exponential power delay profile and Jakes� Doppler spectrum. 

Fig. 3 shows the BER performance of the MMSE-BDFE for different values of Q  when the 

normalized Doppler frequency D / 0.15ff ∆ = . We want to highlight that this value generally 

represents a high Doppler spread condition. For instance, for a carrier frequency C 10f =  

GHz and a subcarrier spacing 20f∆ =  kHz, it corresponds to a mobile speed 324V =  

Km/h. We can deduce from Fig. 3 that the performance gain obtained by BDFE tends to 
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increase for high values of Q . However the banded MMSE-BDFE still presents an error 

floor, which is due to the band approximation of the channel. 

Fig. 4 shows the results obtained by MBAE-SOE window design when 1Q =  for several 

values of D / ff ∆ . In this case, since 1Q = , the window design reduces to the optimization of 

a single amplitude parameter, which is the ratio 1 02 | | /b b  plotted in Fig. 4. This figure clearly 

shows that, for a large range of Doppler spreads, the optimum ratio is close to 0.852, which is 

the ratio that characterizes the Hamming window [9]. However, for very high normalized 

Doppler spreads, the optimum ratio tends to decrease, i.e., less energy should be allocated to 

the cosine component. Fig. 5 presents the BER of the MMSE-BLE with SOE windowing 

when 1Q =  and D / 0.15ff ∆ = . The best performance is obtained for the ratio 

1 02 | | / 0.844b b = , which corresponds to our MBAE-SOE design. It should be pointed out 

that also other suboptimum SOE windows outperform the rectangular window, which 

represents the case of no windowing and can be considered as a degenerated SOE window 

with ratio 1 02 | | /b b  equal to zero. 

Fig. 6 shows the BER for some linear equalizers with windowing when 2Q =  and 

D / 0.15ff ∆ = . As far as the MMSE-BLE is concerned, the Hamming window, which is 

near optimum for 1Q = , outperforms the rectangular window. Anyway, the BER 

performance of the MMSE-BLE with MBAE-SOE window is even better, thus confirming 

the goodness of our window design. Among the BLE approaches, the non-banded MMSE-

BLE of [5] has the lowest BER, but its computational complexity is cubic instead of linear in 

the number of subcarriers. Fig. 6 also displays the BER of some non-iterative MMSE-SLEs, 

with and without windowing, obtained from [4] and [21]. In the SLE case, windowing is less 

effective than for BLE: The Hamming window slightly worsens the BER performance with 

respect to the rectangular window, and the MBAE-SOE window even more. This indicates 

that for SLEs windowing alone is not effective and should be coupled with iterative ICI 
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cancellation techniques as in [21]. 

By Fig. 6, we can also note that the proposed banded MMSE-BLE with MBAE-SOE window 

outperforms the non-banded MMSE-SLE of [4], which has the lowest BER among the 

considered non-iterative SLE approaches. In addition, the proposed banded MMSE-BLE with 

MBAE-SOE window has linear complexity in the number of subcarriers, whereas the non-

banded MMSE-SLE of [4] has quadratic complexity. 

It is also interesting to observe that MBAE-SOE windowing allows for a complexity 

reduction by simply reducing the parameter Q , without any performance penalty. Indeed, by 

comparing Fig. 5 with Fig. 6, it is evident that the W-MMSE-BLE with 1Q =  (i.e., that with 

1 02 | | / 0.844b b =  in Fig. 5) outperforms the unwindowed MMSE-BLE with 2Q =  (i.e., that 

identified by rectangular window in Fig. 6). In addition, the complexity of the W-MMSE-

BLE with 1Q =  is roughly 46% of the complexity of the unwindowed MMSE-BLE with 

2Q = . 

Fig. 7 plots the shapes of the windows designed for 2Q =  and D / 0.15ff ∆ = . It is evident 

that the MBAE-SOE window and the Schniter window [21] are very similar. The Schniter 

window, which is designed without the SOE constraint (32), produces an almost-banded 

noise covariance matrix. This means that the SOE constraint (32) does not exclude good 

windows. Moreover, it is interesting to note that for 2Q =  both the Schniter window and the 

MBAE-SOE window are very similar to the Blackman window [9]. We also remember that 

for 1Q =  the MBAE-SOE window and the Schniter window are similar to the Hamming 

window (at least for reasonable values of normalized Doppler spread). Although the 

Hamming and Blackman windows have been derived in a different context, we feel that this 

is not a merely coincidence. Indeed, many common windows, such as Hamming and 

Blackman, have been derived with the purpose of reducing the spectral sidelobes of the 

Fourier transform of the window [9]. Similarly, in our case, we want to mitigate the ICI 

outside the band of the channel matrix, and this ICI is caused by the spectral sidelobes of the 
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Fourier transform of the window. However, in our scenario, the window design is also 

dependent on other factors, such as the Doppler spectrum and the maximum Doppler 

frequency. 

In the second set of simulations, we also take into account the effect of channel estimation. 

We consider an OFDM system with 256N = , U Q= , 2Q =  unless otherwise stated, 

4L = , and QPSK modulation. We assume Rayleigh fading channels with uniform power 

delay profile and Jakes� Doppler spectrum with D / 0.256ff ∆ = . As far as channel 

estimation is concerned, we choose 1 2 1P Q+ = +  GCE basis functions with oversampling 

factor 2K =  [14]. The channel is estimated by using the LMMSE criterion (24). The power 

ratio 3.316ρ ≈  between data and pilots has been chosen according to [12]. The SNR is 

defined as the ratio between total signal power (including pilot power) and noise power. 

Fig. 8 illustrates the MSE of the channel estimation, defined as �MSE {|| ||}/ { }E E= −H H H  

for the unwindowed channel and as W W W
�MSE {|| ||}/ { }E E= −H H H  for the windowed 

channel, assuming 2Q =  and by using orthogonalized GCE (O-GCE) (i.e., Ξ  is obtained 

after the QR decomposition of the GCE basis matrix) and orthogonalized windowed GCE 

(OW-GCE) (i.e., Ξ  is obtained after the QR decomposition of the windowed GCE basis 

matrix) basis functions. Specifically, with O-GCE we first estimate H  and then we 

reconstruct W W=H ∆ H  by the knowledge of the MBAE-SOE window, whereas with OW-

GCE we first estimate WH  and then we reconstruct 1
W W
−=H ∆ H . It is shown that in both 

cases it is better to estimate the windowed channel rather than the unwindowed channel. 

Moreover, the O-GCE basis produces a better estimate of the unwindowed channel with 

respect to the OW-GCE basis. 

Fig. 9 compares the BER performance of the banded W-MMSE-BDFE with the banded W-

MMSE-BLE and the banded MMSE-BDFE. It is evident that the W-MMSE-BDFE 

outperforms the other two equalizers. Specifically, the W-MMSE-BDFE is able to reduce the 
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error floor. This reduction is more pronounced for high values of Q . It is also worth noting 

that the degradation produced by channel estimation is quite small for both W-MMSE-BLE 

and W-MMSE-BDFE, especially at high SNR. Due to the good channel estimation, the BER 

floor is caused mainly by the band approximation. Similar conclusions can be drawn for 

different Doppler spreads. 

 

VI. CONCLUSIONS 

In this paper, we have designed banded MMSE equalizers for OFDM systems in high 

Doppler spread channels. Thanks to a band LDL factorization algorithm, these MMSE 

equalizers are characterized by a low complexity. To enhance BER performance, both 

decision-feedback and optimum (in the MBAE sense) receiver windowing have been 

investigated. Moreover, by means of a BEM channel estimation approach, we validated the 

effectiveness of the proposed equalizers also in the presence of channel estimation errors. We 

remark that the values of Q  used in the various band approximations could also be different. 

However, due to space constraints, we used the same value for all the band approximations. A 

deeper analysis of the impact of different Q �s could be the subject of future work. 
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Fig. 1. Effect of the band approximation. In this example, we show only the active part of the 

matrix ( A 8N = , 1Q = ). 
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Fig. 2. Structure of the BDFE. 
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Fig. 3. BER comparison between MMSE-BLE and MMSE-BDFE ( D / 0.15ff ∆ = ). 
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Fig. 4. MBAE-SOE window as a function of the normalized Doppler spread ( 1Q = ). 
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Fig. 5. BER of MMSE-BLE with different SOE windows 
( D / 0.15ff ∆ = , 1Q = ). 
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Fig. 6. BER of MMSE-BLE and MMSE-SLE with different windows 
( D / 0.15ff ∆ = , 2Q = ). 

 



Submitted to EURASIP Journal on Applied Signal Processing, June 2005 � Revised on Jan. 2006 

 31

 

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n

[w
] n

Blackman window
Schniter window
MBAE-SOE window
rectangular window

 

Fig. 7. Shape of different windows ( D / 0.15ff ∆ = , 2Q = ). 
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Fig. 8. MSE of different channel estimations ( D / 0.256ff ∆ = , 2Q = ). 
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Fig. 9. BER comparison of banded MMSE equalizers ( D / 0.256ff ∆ = ). 
 


