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Abstract—The goal of this paper is to propose adaptive
strategies for distributed learning of signals defined over graphs.
Assuming the graph signal to be band-limited, the method enables
distributed adaptive reconstruction from a limited number of
sampled observations taken from a subset of vertices. A detailed
mean square analysis is carried out and illustrates the role
played by the sampling strategy on the performance of the
proposed method. Finally, a distributed selection strategy for
the sampling set is provided. Several numerical results validate
our methodology, and illustrate the performance of the proposed
algorithm for distributed adaptive learning of graph signals.

Index Terms—Graph signal processing, sampling on graphs,
adaptation and learning over networks, distributed estimation.

I. INTRODUCTION

Over the last few years, there was a surge of interest

in the development of processing tools for the analysis of

signals defined over a graph, or graph signals for short [1], [2].

Graph signal processing (GSP) considers signals defined over a

discrete domain having a very general structure, represented by

a graph, and subsumes classical discrete-time signal processing

as a very simple case. Several processing methods for signals

defined over a graph were proposed in [2], [3], [4], and one

of the most interesting aspects is that these analysis tools

come to depend on the graph topology. A fundamental role

in GSP is played by spectral analysis, which passes through

the definition of the Graph Fourier Transform (GFT), see,

e.g., [1], [2], and paves the way for the development of a

sampling theory for signals defined over graphs, whose aim

is to recover a band-limited (or approximately band-limited)

graph signal from a subset of its samples, see, e.g., [5]–[7].

Several reconstruction methods have been proposed, either

iterative as in [8], [9], or single shot, as in [5], [6], [10].

Furthermore, as shown in [5], [6], the selection of the sampling

set plays a fundamental role in the reconstruction task.

Almost all previous art considers centralized processing

methods for graph signals. In many practical systems, data

are collected in a distributed network, and sharing local

information with a central processor is either unfeasible or not

efficient, owing to the large size of the network and volume
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of data, time-varying network topology, bandwidth/energy

constraints, and/or privacy issues. In addition, a centralized

solution may limit the ability of the nodes to adapt in real-time

to time-varying scenarios. Motivated by these observations,

in this paper we focus on distributed techniques for graph

signal processing. Some distributed methods were recently

proposed in the literature, see, e.g. [11]–[13]. In this paper,

we propose distributed strategies for adaptive learning of

signals defined on graphs. The work merges, for the first time

in the literature, the well established field of adaptation and

learning over networks, see, e.g., [14], with the emerging area

of graph signal processing. The proposed method exploits the

graph structure that describes the observed signal and, under

a band-limited assumption, enables adaptive reconstruction

and tracking from a limited number of observations taken

over a subset of vertices in a totally distributed fashion.

A detailed mean square analysis illustrates the role of the

sampling strategy on the reconstruction capability, stability,

and performance of the proposed algorithm. Thus, based on

these results, we also propose a distributed method to select

the set of sampling nodes in an efficient manner. An interesting

feature of our proposed strategy is that this subset is allowed

to vary over time, provided that the expected sampling set

satisfies specific conditions enabling signal reconstruction.

II. GRAPH SIGNAL PROCESSING TOOLS

In this section, we introduce some useful concepts from

GSP that will be exploited along the paper. Let us consider a

graph G = (V, E) composed of N nodes V = {1, 2, ..., N},
along with a set of weighted edges E = {aij}i,j∈V , such that

aij > 0, if there is a link from node j to node i, or aij = 0,

otherwise. The adjacency matrix A = {aij}Ni,j=1 ∈ R
N×N

is the collection of all the weights aij , i, j = 1, . . . , N .

The degree of node i is ki :=
∑N

j=1 aij , and the degree

matrix K is a diagonal matrix having the node degrees on

its diagonal. The Laplacian matrix is defined as: L = K−A.

If the graph is undirected, the Laplacian matrix is symmetric

and positive semi-definite, and admits the eigendecomposition

L = UΛUH , where U collects all the eigenvectors of L in its

columns, whereas Λ contains the eigenvalues of L. A signal

x over a graph G is defined as a mapping from the vertex



set to the set of complex numbers, i.e. x : V → C. In many

applications, the signal x admits a compact representation, i.e.,

it can be expressed as:

x = Us (1)

where s is exactly (or approximately) sparse. As an example,

in all cases where the graph signal exhibits clustering features,

i.e. it is a smooth function within each cluster, but it is

allowed to vary arbitrarily from one cluster to the other, the

representation in (1) is compact, i.e. s is sparse. The GFT s
of a signal x is defined as the projection onto the orthogonal

set of eigenvectors [1], i.e.

GFT: s = UHx. (2)

The GFT has been defined in alternative ways, see, e.g., [1],

[2], [5]. In this paper, we follow the approach based on the

Laplacian matrix, assuming an undirected graph structure,

but the theory could be extended to handle directed graphs

considering, e.g., a GFT as proposed in [2]. Also, we denote

the support of s in (1) as F = {i ∈ {1, . . . , N} : si �= 0},
and the bandwidth of the graph signal x is defined as the

cardinality of F , i.e. |F|. Finally, given a subset of vertices

S ⊆ V , we define a vertex-limiting operator as

DS = diag{1S}, (3)

where 1S is the set indicator vector, whose i-th entry is equal

to one, if i ∈ S , or zero otherwise.

III. DISTRIBUTED LEARNING OF GRAPH SIGNALS

We consider the problem of learning a (possibly time-

varying) graph signal from observations taken from a subset of

vertices of the graph. Let us consider a signal xo = {xo
i }Ni=1 ∈

C
N defined over the graph G = (V, E). The signal is assumed

to be perfectly band-limited, i.e. its spectral content is different

from zero only on a limited set of indices F . If the signal

support is fixed and known beforehand, from (1), the graph

signal xo can be modeled in compact form as:

xo = UFso, (4)

where UF ∈ C
N×|F| collects the subset of columns of

matrix U in (1) associated to the frequency indices F , and

so ∈ C
|F|×1 is the vector of GFT coefficients of the frequency

support of the graph signal xo. Let us assume that streaming

and noisy observations of the graph signal are sampled over a

(possibly time-varying) subset of vertices. In such a case, the

observation taken by node i at time n can be expressed as:

yi[n] = di[n] (x
o
i + vi[n]) = di[n]

(
cHi so + vi[n]

)
, (5)

i = 1, . . . , N , where H denotes complex conjugate-

transposition; di[n] = {0, 1} is a random sampling binary

coefficient, which is equal to 1 if node i is taking the

observation at time n, and 0 otherwise; vi[n] is a zero-mean,

spatially and temporally independent observation noise, with

variance σ2
i ; also, in (5) we have used (4), where cHi ∈ C

1×|F|

denotes the i-th row of matrix UF . In the sequel, we assume

that each node i has local knowledge of its corresponding

regression vector ci in (5). This is a reasonable assumption

even in the distributed scenario considered in this paper.

Indeed, there exist many techniques that enable the distributed

computation of eigenparameters of matrices describing sparse

topologies such as the Laplacian or the adjacency, see, e.g.,

[15], [16]. The distributed learning task consists in recovering

the band-limited graph signal xo from the noisy, streaming,

and partial observations yi[n] in (5) by means of in-network

processing and local exchange of information among nodes

in the graph. Following a least mean squares approach [14],

the reconstruction task can be formulated as the cooperative

solution of the following optimization problem:

min
s

N∑
i=1

E d,v

∣∣di[n] (yi[n]− cHi s
)∣∣2 , (6)

where E d,v(·) denotes the expectation operator evaluated over

the random variables {di[n]}Ni=1 and {vi[n]}Ni=1, and we have

exploited di[n]
2 = di[n] for all i, n. In the rest of the paper, to

avoid overcrowded symbols, we will drop the subscripts in the

expectation symbol referring to the random variables. In the

sequel, we first analyze the conditions that enable signal re-

covery from a subset of samples. Then, we introduce adaptive

strategies specifically tailored for the distributed reconstruction

of graph signals from a limited number of samples.

A. Conditions for Signal Reconstruction

Assuming the random sampling and observations processes

d[n] = {di[n]}Ni=1 and y[n] = {yi[n]}Ni=1 to be stationary, the

solution of problem (6) is given by the vector so that satisfies

the normal equations:(
N∑
i=1

E{di[n]}cicHi
)
so =

N∑
i=1

E{di[n]yi[n]} ci. (7)

Letting pi = E{di[n]}, i = 1, . . . , N , be the probability that

node i takes an observation at time n, from (7), it is clear that

reconstruction of so is possible only if the matrix

N∑
i=1

picic
H
i = UH

FPUF (8)

is invertible, with P = diag(p1, . . . , pN ) denoting a vertex

sampling operator as (3), but weighted by the sampling

probabilities {pi}Ni=1. Let us denote the expected sampling

set by S = {i = 1, . . . , N | pi > 0}: S represents the set

of nodes of the graph that collect data with a probability

different from zero. From (7) and (8), a necessary condition

enabling reconstruction is |S| ≥ |F|, i.e., the number of

nodes in the expected sampling set must be greater than

equal to the signal bandwidth. However, this condition is

not sufficient, because matrix UH
FPUF in (8) may loose

rank, or easily become ill-conditioned, depending on the graph

topology and sampling strategy (defined by S and P). To

provide a condition for signal reconstruction, we proceed

similarly to [6], [9]. Since pi > 0 for all i ∈ S , matrix (8) is



invertible if matrix
∑

i∈S cic
H
i = UH

FDSUF has full rank,

where DS is the vertex-limiting operator that projects onto the

expected sampling set S . Let us now introduce the operator

DSc
= I −DS , which projects onto the complement of the

expected sampling set, i.e., Sc = {i = 1, . . . , N | pi = 0}.
Then, exploiting DSc

in UH
FDSUF , signal reconstruction is

possible if I−UH
FDSc

UF is invertible, i.e., if condition∥∥DSc
UF

∥∥
2
< 1 (9)

is satisfied. As shown in [6], condition (9) is related to the

localization properties of graph signals: It implies that there are

no F-bandlimited signals that are perfectly localized over the

set Sc. Proceeding as in [6], it is easy to show that condition

(9) is necessary and sufficient for signal reconstruction. We

remark that, differently from previous works on graph signal

sampling, condition (9) depends on the expected sampling set.

B. Adaptive Distributed Strategies

In this paper, our emphasis is on distributed, adaptive solu-

tions, where the nodes perform the graph signal reconstruction

task via online in-network processing only exchanging data be-

tween neighbors. To this aim, we employ diffusion adaptation

techniques, which were largely studied in literature, see, e.g.,

[14]. The resulting algorithm applied to solve problem (6) is

reported in Table 1, and will be termed as the Adapt-Then-

Combine (ATC) diffusion strategy. The first step in (10) is

Table 1: ATC diffusion for graph signal learning

Data: si[0] chosen at random for all i; {wij}i,j satisfying

(11); (sufficiently small) step-sizes μi > 0. Then, for each

time n ≥ 0 and for each node i, repeat:

ψi[n] = si[n] + μidi[n]ci(yi[n]− cHi si[n])

(adaptation step) (10)

si[n+ 1] =
∑
j∈Ni

wijψj [n] (diffusion step)

xi[n+ 1] = cHi si[n+ 1] (reconstruction step)

an adaptation step, where the intermediate estimate ψi[n] is

updated adopting the current observation taken by node i, i.e.,

yi[n], if di[n] = 1 at time n. The second step is a diffusion

step where the estimates ψj [n], from the spatial neighbors

j ∈ Ni, are combined through the real, non-negative, weights

{wij}, which match the graph G and satisfy:

wij = 0 for j /∈ Ni, and W1 = 1, (11)

where W ∈ R
N×N is the matrix with individual entries {wij},

and Ni = {j = 1, . . . , N | aij > 0}⋃{i} is the neighborhood

of node i. Finally, given si[n+ 1], the last step produces the

estimate xi[n+1] of the graph signal value at node i [cf. (5)].

IV. MEAN-SQUARE ANALYSIS

In this section, we analyze the performance of the ATC

strategy in (10) in terms of its mean-square behavior. To this

aim, we introduce the error quantities ei[n] = si[n] − so,

i = 1, . . . , N , and the network vector

e[n] = col{e1[n], . . . , eN [n]}. (12)

We also introduce the matrices

M = diag{μ1I|F|, . . . , μNI|F|}, (13)

Ŵ = W ⊗ I|F|, (14)

where ⊗ denotes the Kronecker product operation, and the

extended sampling operator

D̂[n] = diag
{
d1[n]I|F|, . . . , dN [n]I|F|

}
. (15)

We further introduce the block quantities:

Q = diag
{
c1c

H
1 , . . . , cNcHN

}
, (16)

g[n] = col{c1v1[n], . . . , cNvN [n]}. (17)

Then, exploiting (12)-(17), we conclude from (10) that the

following relation holds for the error vector:

e[n+ 1] = Ŵ
(
I−MD̂[n]Q

)
e[n] + ŴMD̂[n]g[n]. (18)

This relation tells us how the network error vector evolves over

time. Before moving forward, we introduce two assumptions.

Assumption 2 (Independent sampling): The sampling pro-

cess {di[t]} is temporally and spatially independent, for all

i = 1, . . . , N and t ≤ n.

Assumption 3 (Small step-size): The step-sizes {μi} are

sufficiently small so that terms that depend on higher-order

powers of {μi} can be ignored.

We now proceed by illustrating the stability and steady-state

performance of the proposed algorithm in (10).

A. Mean-Square Stability

The following theorem guarantees the asymptotic mean-

square stability (convergence in mean and mean-square sense)

of the ATC diffusion strategy (10).

Theorem 1 (mean-square stability): Assume data model (5),

Assumptions 1, 2, and 3 hold. Then, for any initial condition

and any choice of W satisfying (11) and 1TW = 1T , the

algorithm (10) will be mean-square stable if the sampling

strategy satisfies condition (9).

Proof. See [17].

Essentially, to guarantee the mean-square stability of the

distributed procedure, two important conditions are necessary:

(a) the network must collect samples from a sufficiently large

number of nodes on average, i.e. condition (9) must hold; (b)

the step-sizes μi must be chosen sufficiently small.

B. Steady-State Performance

After some calculations [17], assuming that the convergence

conditions are satisfied, we obtain

lim
n→∞E‖e[n]‖2(I−H)σ = vec

(
ŴMP̂GMŴ

T
)T

σ, (19)



where we used interchangeably the notation ‖e‖2σ and ‖e‖2Σ
to denote the same quantity eHΣe, G = E

[
g[n]g[n]H

]
, and

H = E

{(
I−QT D̂[n]M

)
Ŵ

T ⊗
(
I−QD̂[n]M

)
Ŵ

T
}
.

From (19), letting x̃[n] = {x̃i[n]}Ni=1, the mean-square devia-

tion (MSD) is given by:

MSD = lim
n→∞E‖x̃[n]‖2 = lim

n→∞E‖s̃[n]‖2vec(Q)

= vec
(
ŴMP̂GMŴ

T
)T

(I−H)−1q, (20)

where q = vec
(∑N

i=1 Ri ⊗ cic
H
i

)
= vec (Q) [cf. (16)]. In

the sequel, we will confirm the validity of these theoretical

expressions by comparing them with numerical results.

V. DISTRIBUTED GRAPH SAMPLING STRATEGIES

The properties of the proposed distributed algorithm in

(10) for graph signal reconstruction strongly depend on the

expected sampling set S . Thus, in this section we propose

a distributed method that iteratively selects vertices from the

graph in order to build an expected sampling set S that

enables reconstruction with a limited number of nodes, while

guaranteeing good learning performance. In the sequel, we

assume that the probabilities {pi}Ni=1 are known or can be

locally estimated at each node. Then, to allow for distributed

implementations, we consider the general selection problem:

S∗ = argmax
S

h
(S) = f

⎛⎝∑
i∈S

pi
1 + σ2

i

cic
H
i

⎞⎠ (21)

subject to |S| = M

where S is the expected sampling set; M is the given number

of vertices samples to be selected; the weighting terms pi/(1+
σ2
i ) take into account (possibly) heterogeneous sampling and

noise conditions at each node; and f(·) : C|F|×|F| → R is a

function that measures the degree of invertibility of the matrix

in its argument, e.g., the (logarithm of) pseudo-determinant

[6], [9], or the minimum eigenvalue [5]. However, since

the formulation in (21) translates inevitably into a selection

problem, whose solution in general requires an exhaustive

search over all the possible combinations, the complexity of

such procedure becomes intractable also for graph signals of

moderate dimensions. To cope with these issues, in table 2,

we provide an efficient, albeit sub-optimal, greedy strategy

that tackles the problem of selecting the (expected) sampling

set in a distributed fashion. The idea underlying the proposed

approach is to iteratively add to the (expected) sampling set

the vertices of the graph that lead to the largest increment of

the performance metric h
(S) in (21), in a totally distributed

manner. Given the current instance of the set S , at Step 1, each

node j /∈ S evaluates locally the value of the objective function

h
(S ∪ j

)
that the network would achieve if node j was added

to S. Then, in step 2, the network finds the maximum among

the local values computed at the previous step. This task can be

easily obtained with a distributed iterative procedure as, e.g., a

Table 2: Distributed Graph Sampling Strategy

Input Data : M , the number of samples. S ≡ ∅.
Output Data : S, the expected sampling set.

Function :

while |S| < M

1) Each node j computes locally h
(S ∪ j

)
, for all j /∈ S;

2) Distributed selection of the maximum: find

s∗ = argmax
j /∈S

h
(S ∪ j

)
3) S ← S ∪ {s∗};
4) Diffusion of

√
ps∗

1 + σ2
s∗

cs∗ over the network;

end

maximum consensus algorithm [18]. The node s∗, which has

achieved the maximum value at step 2, is then added to the

expected sampling set. Finally, the weighted regression vector

associated to the selected node, i.e.
√

ps∗/(1 + σ2
s∗)cs∗ , is

diffused over the network through a flooding process. This

allows each node not belonging to the sampling set to evaluate

step 1 of the algorithm at the next round. This procedure

continues until the network has selected M samples. From a

communication point of view, in the worst case, the procedure

in Table 2 requires that each node exchanges MD(1 + 2|F|)
scalar values to accomplish the distributed task of sampling

set selection, where D is the diameter of the network.

VI. NUMERICAL RESULTS

In this section, we illustrate some numerical simulations

aimed at assessing the performance of the proposed strategy

for distributed learning of signals defined over graphs. Let us

consider a network composed of N = 20 nodes, deployed

over a unitary area, and having a sparse connectivity. We

generate a graph signal from (1) having a spectral content

limited to the first five eigenvectors of the Laplacian matrix

of the graph. The observation noise in (5) is chosen to be

zero-mean, Gaussian, with variance chosen uniformly random

between 0 and 0.1 for all i. As a first example, in Fig. 1,

we report the transient behavior of the MSD obtained by

proposed method, for different number of nodes belonging

to the expected sampling set. The expected sampling set is

chosen according to the distributed strategy proposed in Table

2, where the function f(·) is chosen to be the logarithm of the

pseudo-determinant function, and the sampling probabilities

are set equal to pi = 0.5 for all i ∈ S . The step-sizes μi

in (10) are chosen equal to 0.5 for all i; the combination

weights {wij} are selected using the Metropolis rule. The

curves are averaged over 200 independent simulations, and

the corresponding theoretical steady-state values in (20) are

reported for the sake of comparison. As we can see from Fig.

1, the theoretical predictions match well the simulation results.

As a further example, in Fig. 2, we illustrate the steady-

state MSD of the algorithm in (10) comparing the performance
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obtained by four different sampling strategies, namely: (a)

the Max-Det strategy (obtained setting f(X) as the logarithm

of the pseudo-determinant of X in Table 2); (b) the Max-

λmin strategy (obtained setting f(X) = λmin(X) in Table

2); (c) the random sampling strategy, which simply picks at

random |S| nodes; and (d) the exhaustive search procedure

aimed at minimizing the MSD in (20) over all the possible

sampling combinations. In general, the latter strategy cannot

be performed for large graphs and/or in a distributed fashion,

and is reported only as a benchmark. Comparing the sampling

strategies, we notice from Fig. 2 that the Max-Det strategy

outperforms all the others, giving good performance also at

low number of samples (|S| = 5 is the minimum number

of samples that allows signal reconstruction). Interestingly,

even if the proposed Max-Det strategy is a greedy approach,

it shows performance that are comparable to the exhaustive

search procedure, which represents the best possible perfor-

mance achievable by a sampling strategy in terms of MSD.

VII. CONCLUSIONS

In this paper, we have proposed distributed strategies for

adaptive learning of graph signals. The method enables dis-

tributed adaptive reconstruction and tracking from a limited

number of observations taken over a subset of vertices. An

interesting feature of our proposed method is that the sampling

set is allowed to vary over time, and the convergence properties

depend only on the expected set of sampling nodes. A detailed

mean square analysis is also provided, illustrating the role

of the sampling strategy on the reconstruction capability and

mean-square performance of the proposed algorithm. Based

on this analysis, some useful strategies for the distributed

selection of the (expected) sampling set are also provided.
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