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Abstract—We examine the small sample size performance of
the energy detector for spectrum sensing in AWGN. By making
use of the cube-of-Gaussian approximation of chi-squared ran-
dom variables, we derive a novel, simple, and accurate analytical
expression for the minimum number of samples required to
achieve a desired probability of detection and false alarm. This
way, the number of samples can be calculated by the energy
detector with low complexity. We also propose a useful approx-
imation for the performance of cooperative energy detection.

Index Terms—Cooperative sensing, energy detector, Gaussian
approximation, small sample size, spectrum sensing.

I. INTRODUCTION

HE ENERGY detector (ED), also known as radiome-

ter, is one of the most popular detection schemes for
spectrum sensing and radar applications [1]. The false-alarm
and detection performances of the ED have been widely
investigated in [1]-[6], assuming that the signal to be detected
is either deterministic [2] or random [1], [6], and in different
channel conditions, such as additive white Gaussian noise
(AWGN) [1], [2], or fading channels [3], [4]. In cognitive radio
applications, the ED should determine the minimum number
of samples that permits to achieve a desired ED performance
[6]. Despite the results available in [1]-[6], no closed-form
formulae exist for the exact calculation of the minimum
number of samples required by the ED in AWGN channels. An
implicit exact calculation is actually possible, but requires an
iterative trial-based approach, which is computationally costly
for the ED. On the other hand, approximated formulae for
the minimum number of samples are available only for large
sample sizes [1]-[5].

This letter proposes novel analytical closed-form expres-
sions for the minimum number of samples required by the
ED in AWGN to achieve a desired probability of detection
and false alarm, when detecting Gaussian or deterministic
signals. The proposed expressions are obtained by exploiting
a known approximation for chi-square distributions [7]. The
main features of the proposed formulae are: (a) great accuracy
for every sample size; (b) low computational complexity that
can be tolerated by a simple ED. Besides, we propose a useful
approximation for the performance of a cooperative sensing
scheme based on hard decisions taken by multiple EDs.
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II. EXACT PERFORMANCE

We consider a secondary user of a cognitive radio network
that employs an ED for spectrum sensing purposes. In AWGN,

the received signal y = [y1,...,yn]7 is expressed by
y =as+w, D
yi=as;+w;, 1=1,...,N, 2)

where s = [s1,...,sy]7 is the primary user signal, N is
the number of samples, w = [wy,...,wx]? is the complex
AWGN, with zero mean and covariance Xw = O'\QNI N, and
a = 0 (Hp hypothesis) or « = 1 (H; hypothesis) in the
absence or presence, respectively, of the primary signal. In
this section and in Sections III and IV, we assume a statistical
model for the primary signal s, which is complex Gaussian
with zero mean and covariance Xg = agl ~ (a deterministic
model for the primary signal will be considered in Section V).
The ED first computes the test statistic

N
T(y) = Iyl* =Y lnil* 3)

i=1
If T(y) exceeds the threshold ¢, then the ED decides that
the signal is present, otherwise it decides for the signal
absence. Under the Hy, hypothesis, 27'(y)/o%; is a chi-squared
random variable with 2N degrees of freedom, and hence the

probability of false alarm is [1], [6],

Pea =Pr{T(y) > t|a =0} =1— Fan(2t/od), (4

where Fon(z) = [[(N)]7! foz/Q vN=le7"dv is the regu-
larized lower incomplete gamma function, and T'(N) is the
gamma function [7]. Under the H; hypothesis, 27'(y)/ (o +
0%;) is a chi-squared random variable with 2N degrees of
freedom, and hence the probability of detection is [1], [6],

2t
o5+ ow

From (4) and (5), by eliminating the threshold ¢, the receiver
operating characteristic (ROC) can be obtained as

Po=1-Fyy ((1 ) R - PFA)) (6

where v = 03 /0%, is the signal-to-noise ratio (SNR) and z =
F,;\(p) is the inverse of p = Fon () with respect to z.

In order to exactly calculate the minimum number of sam-
ples IV that is required to achieve a prescribed performance
(Ppa, Pp) for a given SNR ~, an iterative algorithm is
necessary, since (6) cannot be inverted with respect to N. For
instance, the iterative algorithm can calculate the right-hand
side of (6) for increasing values of N, until the right-hand
side becomes equal to (or larger than) the prescribed FPp.
However, this iterative approach has a large computational
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complexity, since it requires multiple evaluations of two-
dimensional functions such as Fyy () and Fy (p). If the ED
has to calculate the required number of samples, it is necessary
to use low-complexity (but accurate) analytical expressions
that are capable to explicitly provide the required minimum
number of samples N in closed form.

III. GAUSSIAN APPROXIMATION

In order to find the required number of samples N, the stan-
dard approach is to approximate the chi-squared distribution
as Gaussian [1], [5]. The central limit theorem yields [1]

where Q(z) = [° e~"*/2 du /\/2x. Using (7), (6) becomes

Po~Q((1+9)7'Q 7 (Fa) - 11+ ) VN), ®)

which permits to analytically derive the minimum number of
samples that are required to achieve a prescribed performance
(Pra, Pp) for a given SNR ~, as expressed by

N~ “W‘lQ‘%f%A)—(1+~r4)Q‘%fbﬂ2]. ©)

Since it is obtained using the central limit theorem, (9) is a
good estimate of the required number N of samples only when
N is sufficiently high. In addition, Gaussian approximations
tend to be more accurate in the middle of a bell-shaped
probability density function (pdf), rather than near to the edges
or queues of a pdf. Hence, some care should be taken when
using (9) with very low Pga or very high Pp.

IV. CUBE-OF-GAUSSIAN APPROXIMATION

To avoid the abovementioned shortcomings of the Gaussian
approximation, we make use of the cube-of-Gaussian approx-
imation approach [1], [8]. To the best of our knowledge, this
approach is novel and has not been exploited for characterizing
the performance of the ED.

In the proposed cube-of-Gaussian approach, a chi-squared
random variable, divided by 2N (which is the number of
degrees of freedom), is approximated by the cube of a Gaus-
sian random variable [8] with mean 1 — (9N)~! and variance
(9N)~L. This is summarized by

Yr/CN) —[1 - <9N>1]> o)

(9N)—1/2
Using (10), the ROC (6) becomes

FQN(./,C) ~ ].—Q(

Po=Q(f()Q ' (Pra) — [1 = f(MIg(N)), (1)
fo) =1+, g<N>=9§V¢‘Nl. (12)

The approximated ROC (11) permits to derive the minimum
number of samples that are required to achieve a desired
performance (Pga, Pp) for a given SNR ~, as expressed by

N~ % (b+ VP2 +4ﬂ , (13)
b= b(")/aPFA,PD) _ f(V)Q_l(PFA) - Q_l(PD) (14)

1—f(v) ’
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with f(v) defined in (12). Since the cube-of-Gaussian approx-
imation (10) of a chi-squared pdf is more accurate than the
classical Gaussian approximation (7) [8], we expect that (13)
will be more accurate than (9) for small sample sizes and for
very low Pga (or very high Pp). This will be confirmed by
the numerical results reported in Section VII.

Note that, when the SNR ~ tends to zero, b in (14) tends to
3[Q 1 (Pra) — Q71 (Pp)]/v, and N in (13) tends to b?/9.
Therefore, at very low SNR, the number N of required
samples tends to [Q71(Pra) — Q71 (Pp)]?/~?, which is the
same asymptotic result obtained from (9) in the Gaussian
case. This means that the cube-of-Gaussian approximation
(13) agrees with the Gaussian approximation (9) at very low
SNR, or equivalently when the number of samples is very
high.

The cube-of-Gaussian approximation (10) can be used also
for identifying a specific point of the ROC when NV and ~y are
fixed. For instance, we can choose the couple (Pra, Pp) that
minimizes the total error rate (TER), defined as

Prer = Ppa + (1 — Pp).

From (15), the minimum TER is obtained when O Pp /0 Pra =
1, which, after some computations using (10)—(12), leads to

Ppa = Q(a(7,N)), (16)

Po = Q(f(v)a(yv,N)—[1— f()]g(N)),  (7)

3 g(N) \? | 2In(1/f(y))  f(0g(N)
“(”’N)‘\/<1+f(v>) M Ty R T R

It is noteworthy that, differently from the considered Gaus-
sian and cube-of-Gaussian approximations, a chi-squared ran-
dom variable can also be conveniently approximated as the
square, or the fourth-power, of a Gaussian random variable
with suitable mean and variance [8], [9]. We only consider
the cubic approximation, which is the one that gives the
best accuracy [8], [9]; however, a similar analysis could be
performed, e.g., for square-of-Gaussian approximations.

15)

V. DETERMINISTIC MODEL

In Section II, we have assumed a statistical model for the
primary user signal s, since, in cognitive radio applications, the
primary signal contains information and is therefore random.
Specifically, the Gaussian assumption for the pdf of s is
compliant with a primary user that transmits multicarrier
signals. However, for deterministic signals, and for single-
carrier transmissions with constant envelope signals, a deter-
ministic model for the primary user signal s may be more
appropriate. In this section, we show that the cube-of-Gaussian
approximation approach can be used also for deterministic
signals.

We redefine the SNR p = Es/(No%;), where Es = [|s||”.
Assuming a primary signal with constant modulus |s;| = s,
we have Eg = Ns? and the SNR becomes p1 = s%/0%;. When
the signal is absent, the probability of false alarm is obviously
expressed by (4). Under the H; hypothesis, 27(y)/o%; in
(3) is a noncentral chi-square random variable [7], [10],
with 2N degrees of freedom and noncentrality parameter
A = 2uN. This noncentral chi-square random variable can
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be well approximated as a chi-square random variable with
an increased number of degrees of freedom [2], [10], which
is expressed by 2(1 4 p)N. As a consequence, we can again
apply the cube-of-Gaussian approach of Section IV. Due to
the lack of space, we omit the whole derivation, and herein
report the ROC as

P~ @ (Fap(01Q " (Pea) 4 9(9)] — 00 (1)

fo(p) = (L4 p)* /(1 +2p)"/2, (19)

and the minimum number of samples to achieve a specified
performance (Pga, Pp) for a given SNR 1, as

IN[f1()]* — 1)

[4142( B+ /B~ 14C) W (20)
= 9[f1(1) — foy3(p)], 21
=3[Q " (Pp) — foy3(1)Q " (Pra)l, (22)
C:fz/S( ) = [flm) ™" (23)

Differently, in the deterministic case, the Gaussian approxi-
mation produces [5]

2
N~ H%Q*(PFA) - 1%2“@—1%)] w NG

VI. COOPERATIVE ENERGY DETECTION

In this section, we extend the proposed analysis to central-
ized spectrum sensing by means of K cooperating sensors,
each one equipped with an ED [11], [12]. We assume the
same scenario of [11], where the distance between the primary
transmitter and any cognitive radio is large when compared
to the distance between any two cognitive radios. This as-
sumption leads to EDs with the same SNR [11]. Similarly
to [11], for the primary signal we consider the deterministic
model of Section V, and assume that the X EDs use the same
threshold ¢. Under these assumptions, the K EDs have the
same probabilities of detection and false alarm [11]. A fusion
center (FC) collects the K hard decisions taken by the K
sensors, and decides by means of either a majority-voting
rule or another voting rule [11], such as the “and” rule or
the “or” rule. Assuming a majority-voting rule and K odd,
the probability of false alarm Ipsa = hx (Pra) at the FC,
or the probability of detection IIp = hg (Pp) at the FC, is
expressed as [11], [12],

(K
Il = hg(P) = (_)Pia—P)(K—i)
K+1 K+1
=Ip(— = 2
P ( 5 9 ) ) (25
where I,(y,z) is the regularized incomplete beta function

[7]. If the number of sensors K is large enough, we can
approximate the binomial distribution in (25) by a Gaussian,
as expressed by

nor~o () e
g1 1 Q' (Im)
P =h () = 2 TR TR (27)

IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 9, SEPTEMBER 2013

=]

—_
o

Probability of miss detection 1 — PD

N

-
O\

10° 10 107 10°
Probability of false alarm PFA
Fig. 1. Complementary ROC of the ED for the statistical model (N = 3).

The markers denote the minimum TER points.

To achieve a prescribed FC performance (Ilga,Ilp) for a
given number of sensors K, we can determine the required
sensor performance Ppp = h1_<1 (IIga) and Pp = h1_<1 (IIp)
using the Gaussian approach (27), and then the number of
samples N required by each ED by the cube-of-Gaussian
approach (20). Alternatively to (27), we can determine the
required sensor performance Prpa and Pp by exploiting the
improved approximation 26.5.22 in [7] for the inverse of the
regularized incomplete beta function in (25), as expressed by

1

/ —1 2_3 )
1+62K—1Q—1(H) K+[Q ((1;[)] 3

and then use again (20) to identify the number of samples N
required by each ED.

On the other hand, if both the FC performance (IIpa, IIp)
and the sensor performance (Ppa,Pp) are fixed, we can
determine the required number of sensors K as

P=h (D) ~ (28)

K = max {K(HFA,PFA),K(HD,PD)}, (29)
where, by the Gaussian approximation (26)—(27),
- N Q'(m]”
K(H,P)N{ZLP(l—P)[l_MD} , (30)
or, alternatively, by the improved approximation (28),
o ) + / [B()]” + 4A(P)C(1D) N
( A( P) N EY)
_ 2
A(P) = [m 1-P) /P} , 32)
B(I) = [~ (1)), (33)
o) = ™' I*{[Q —~ 3} /6. (34)

VII. NUMERICAL RESULTS

We verify the accuracy of the proposed approximations by
means of numerical examples. Fig. 1 shows the complemen-
tary ROC of the ED, for the statistical model of Section II,
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Fig. 2. Number of samples N required for Ppo = 1 — Pp = 10~ 2.
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Fig. 3.  Number of sensors K required for [Ippa =1 — IIp = 10—4.

when the number of samples is N = 3. In this case, the
proposed cube-of-Gaussian approximation (11), denoted with
CGA, agrees with the exact result (6), especially at low
SNR. On the contrary, the classical Gaussian approximation
(8), denoted with GA, significantly deviates from the exact
result (6). Besides, Fig. 1 clearly highlights that the proposed
cube-of-Gaussian approach correctly locates the minimum-
TER point.

Fig. 2 illustrates the number of samples N required by the
ED to achieve the performance Pra = 1 — Pp = 1072,
as a function of the SNR. Again, the proposed cube-of-
Gaussian approximation well matches the exact result, which
has been obtained iteratively. For the statistical model of
Section II, the classical Gaussian approximation is accurate
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only when the number of samples is high, i.e., only at low
SNR. For deterministic signals, the Gaussian approximation
is noticeably more accurate than for the statistical model.
We now consider a cooperative scenario. Fig. 3 displays
the number of sensors K that are required by the FC to

achieve the performance Ilpa = 1 — IIp = 1074, as a
function of the performance Prp = 1 — Pp of each local ED.
Clearly, the Gaussian approximation (30), denoted with GA,
becomes accurate only when there are many sensors, whereas
the proposed improved approximation (31)—(34), denoted with
IA, is very accurate also with very few sensors.

VIII. CONCLUSIONS

We have proposed, discussed, and verified, simple and accu-
rate approximations to be used for the performance evaluation
of both the ED and a cooperative ED in AWGN channels. We
believe that the proposed approximations could be exploited
to compute the minimum number of samples requested by the
ED in fading channels [3]-[5].
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