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A Full-Rank Regularization Technique for
MMSE Detection in Multiuser CDMA Systems
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Abstract— In multiuser code-division multiple-access (CDMA)
environments, the ill-conditioning of the covariance matrix of
the received signal may degrade the performance of minimum
mean-squared error (MMSE) detectors, especially when few
samples are available for the covariance matrix estimation. In
order to mitigate this performance degradation, we propose a
full-rank regularized MMSE detector based on the covariance
matrix tapering (CMT) technique. Simulation results show the
effectiveness of the proposed technique at high signal-to-noise
ratio (SNR).

Index Terms— CDMA, covariance matrix tapering, MMSE,
multiuser detection, regularization.

I. INTRODUCTION

IT is well known that the MMSE detector for CDMA
systems can be implemented as a Wiener filter at the chip

level, by multiplying the inverse of the covariance matrix of
the received signal with the signature waveform of the user
of interest [1]. In realistic scenarios, the covariance matrix
may be affected by significant estimation errors. This happens
when only a small sample set is available for the estimation,
e.g., if the transmitted blocks are very short or if the channel
coherence time is not so high. In addition, the covariance
matrix can be ill-conditioned, with a high eigenvalue spread
for high values of the SNR. As a consequence of the matrix
inverse contained in the MMSE detector, the high eigenvalue
spread greatly enhances the covariance matrix estimation
errors.

In order to counteract such errors, a possible approach relies
on regularization techniques [2], which improve the numerical
conditioning by convenient modifications of the estimated
covariance matrix. Regularization methods also include some
reduced-rank techniques [1], which project the received signal
onto a lower-dimensional subspace, thereby resulting in a
covariance matrix with smaller eigenvalue spread.

We show herein that the covariance matrix tapering (CMT),
a full-rank regularization technique proposed in [3][4] for
beamforming applications, is effective also in multiuser
CDMA scenarios. In this context, we introduce two new taper-
ing matrix families. Simulation results show the performance
gain obtained at high SNR by the proposed CMT approach.
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II. MMSE DETECTION OF CDMA SIGNALS

A CDMA system with K active users and processing gain
N is considered. After chip-rate sampling, the received vector
relative to the lth transmitted symbol can be expressed as [5]

r[l] = Hb[l] + n[l], (1)

where r[l] is an MN -dimensional vector, M is the smoothing
factor, H is the MN × K(L + M) block Toeplitz channel
matrix containing the signature waveforms of all the users,
b[l] = [b1[l−L], ..., bK [l−L], ..., b1[l+M−1], ..., bK [l+M−
1]]T is the (KL + KM)-dimensional vector that contains the
data symbols of all the users, L is the length of the time-
dispersive channel in symbol intervals, and n[l] represents
the additive white Gaussian noise (AWGN) with covariance
σ2IMN . The multipath channel of each user is assumed time-
invariant over the transmission of P consecutive symbols.

Without loss of generality, we consider binary phase-shift
keying (BPSK) modulation. The decision rule of a generic
linear receiver is expressed by

b̂k[l] = sign(Re(wH
k r[l])), (2)

where wk is the MN -dimensional vector that represents the
detector of the user k. The detector that minimizes the mean-
squared error E{|bk[l] − wH

k r[l]|2} can be expressed by [1]

wMMSE,k = R−1hk, (3)

where R = E{r[l]r[l]H} = HHH + σ2IMN is the
MN × MN covariance matrix of r[l], and hk, which is the
(KL + k)th column of H [5], is the signature waveform of
the user k. The estimated version of the MMSE receiver is
expressed by

ŵSMI,k = R̂−1ĥk, (4)

where R̂−1 is the sample matrix inverse (SMI). Thus

R̂ =
1
P

P−1∑

l=0

r[l]r[l]H (5)

is obtained without explicit knowledge of H and of σ2, and
the estimated signature waveform ĥk is obtained exploiting
training sequences or blind channel estimation techniques [6].

In many practical situations, the value of P in (5) has to
be kept small. As an example, when ρ = P/(MN) is smaller
than 1, R̂ is not full rank and therefore not invertible. As a
rule of thumb, we can assume that the covariance estimation
errors are small when ρ > 6 [7]. However, when K < N , H
can be tall, with D = rank(H) strictly lower than MN . In
such a situation, R is often ill-conditioned, especially when
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the SNR is high, and hence the matrix inversion in (4) causes
significant performance degradation.

It should be pointed out that the problems induced by a
small P are exacerbated when multiple antennas are used at
the receiver side, because the dimension of R increases by a
factor equal to the number of the receiving antennas.

III. REGULARIZED MMSE DETECTORS

Regularization techniques [2] deal with ill-conditioned
problems by substituting the matrix R with a matrix char-
acterized by a smaller eigenvalue spread. Consequently, the
variance of the estimation errors decreases, at the cost of
introducing some bias in the detector estimate. The goal is
to find a good trade-off between bias and variance.

A. Regularization by Covariance Matrix Loading

Although not widely recognized, some regularization tech-
niques have already been used in multiuser detection. Indeed,
the constrained minimum output energy (CMOE) receiver of
[6] exploits a particular form of Tikhonov regularization [2]
by replacing the matrix R with R + νIMN , as expressed by

ŵCMOE,k = (R̂ + νIMN )−1ĥk, (6)

where ν = αtr(R̂) is a positive parameter. By using the
eigenvalue decomposition (EVD) R = UΛUH , it is easy to
verify the eigenvalue spread reduction. In the array processing
literature, this detector is known as diagonal loaded SMI [7].

B. Regularization by Eigendecomposition Truncation

A different regularized detector can be obtained by applying
the EVD to R and neglecting the eigenvectors associated
with the MN − r smallest eigenvalues. Using this kind of
regularization, usually referred as truncated singular value
decomposition [2] or principal components (PC) analysis, the
reduced-rank detector of the user k can be expressed as

ŵPC,k = ÛrΛ̂−1
r ÛH

r ĥk, (7)

where Ur contains only the r selected eigenvectors. If r is
equal to D = rank(H), the detector is constrained to lie
in the signal subspace [5]. However, a choice r < D could
give better performance because of the reduced eigenvalue
spread [2].

C. Regularization by Krylov Subspace Constraint

A regularizing effect can also be obtained by constraining
the detector to lie in the r-dimensional Krylov subspace
Kr(R,hk) = span{hk,Rhk, ...,Rr−1hk}, because this solu-
tion can be considered as an approximation of the PC solution
[2]. The MMSE detector within the Krylov subspace, known
as multistage Wiener filter (MSWF) [8], can be expressed by

ŵMSWF,k = V̂k,r(V̂H
k,rR̂V̂k,r)−1V̂H

k,rĥk, (8)

where V̂k,r is an orthonormal basis of Kr(R̂, ĥk).

D. Regularization by Covariance Matrix Tapering

We propose herein a new multiuser detector based on the
CMT approach, which has been suggested for beamforming
in order to widen the nulls of the antenna array pattern [3][4].
The idea of CMT is to multiply each element of R with a
different weight, attenuating those elements far apart from the
main diagonal. The CMT detector can be expressed as

ŵCMT,k = (R̂ ◦ T)−1ĥk, (9)

where the symbol ◦ represents the Hadamard (element-wise)
product [9], and T is the tapering matrix. In the following,
we show that the CMT approach gives rise to an eigenvalue
spread χ(R ◦ T) smaller than χ(R).

Theorem 1: If R is an MN ×MN positive definite matrix
and T is an MN × MN correlation matrix [9], i.e., T is
Hermitian positive semidefinite with IMN ◦ T = IMN , then

χ(R ◦ T) ≤ χ(R). (10)
Proof: See the Appendix.

Theorem 1 proves that the CMT certainly is a full-rank
regularization technique, but it does not guide us in the design
of a suitable tapering matrix. In [3], T is chosen as

[Tsinc,α]m,n = sinc(α|m − n|) =
sin(πα|m − n|)

πα|m − n| , (11)

where α > 0 is the regularization parameter. Anyway, by The-
orem 1, any correlation matrix can be selected. For instance,
the CMOE receiver can be interpreted as a way to enhance
the main diagonal of R with respect to all the other diago-
nals. However, since multipath channels introduce significant
correlation between nearby chips, also the diagonals close to
the main diagonal should be enhanced with respect to the
faraway diagonals, thus motivating the CMT approach. Hence,
a reasonable choice of T should produce an attenuation that
increases when moving away from the main diagonal.

Moreover, it should be pointed out that the sinc-shaped
profile in (11) seems to be inappropriate for both high and low
values of α. Indeed, for high values of α, the sinc function
has an oscillating behavior, and some weights are negative.
On the other hand, for low α, the sinc function is concave.
This implies that several diagonals close to the main diagonal
are weighted with similar weights, while only few faraway
diagonals are attenuated. This philosophy is just the opposite
with respect to the one of the well known CMOE detector.

As a result of the previous remarks, we propose a matrix T
whose tapering profile has a second derivative equal to zero
(i.e., the diagonals are weighted linearly), as expressed by

[Ttri,α]m,n = clip(1 − α|m − n|), (12)

where the clipping function clip(x) forces the negative values
of x to zero. Furthermore, we also propose a matrix T whose
profile is a convex function, as expressed by

[Texp,α]m,n = e−α|m−n|. (13)

In all the cases, the parameter α > 0 controls the amount
of regularization. As it happens for the CMOE receiver, the
CMT receiver is equivalent to the SMI receiver when the
regularization parameter α is set to zero, while it tends to the
RAKE receiver for high values of α. Indeed, for increasing
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Fig. 1. BER comparison of various detectors as a function of the SNR.

α, the tapering matrices defined by (12) and (13) tend to
IMN . In this case, only the elements of the main diagonal of
R̂ are selected, and, since these elements are nearly equal,
the CMT receiver in (9) is practically a scaled version of
ŵRAKE,k = ĥk. When such an amount of regularization is
applied, χ(R ◦ T) is roughly equal to 1, but the receiver
has lost the interference mitigation capability of the MMSE
receiver.

Of course, neither α = 0 nor α → +∞ are optimal in the
short data record case. The optimum value of α depends not
only on the chosen tapering matrix, but also on the scenario.
Obviously, when ρ increases, the optimum value of α should
decrease. Different algorithms for the automatic choice of α
can be derived by exploiting the methods employed for other
regularization techniques [2]. These algorithms are still under
investigation and are not considered in the present work.

IV. SIMULATION RESULTS

In this section, we compare by simulations the performance
of the regularized detectors introduced so far. We consider a
downlink situation with a base station that transmits data with
equal power to K = 10 active users. Gold sequences of length
N = 31 have been chosen for the short spreading codes. The
amplitudes of the 15 chip-spaced channel paths are modeled
as independent zero-mean complex Gaussian random variables
with equal variance. Since the channel memory in symbol
intervals is L = 1, the size of the receiving window has been
fixed to M = 2. The length of the data block has been fixed to
P = 372, leading to ρ = 6. The estimated signature waveform
ĥk is obtained by using the subspace approach of [5].

Fig. 1 compares the BER of the different detectors aver-
aged over 300 channel realizations. In order to have a fair
comparison, we have chosen the regularization parameter that
gives the best performance for each detector. In particular, the
best value of α for the CMT detector turns out to be almost
independent of the SNR [10]. It is noteworthy that the two
proposed CMT detectors outperform the one with the sinc
profile (11). Moreover, when SNR > 15 dB, the CMT with
exponential profile (13) gives the best performance among all
the estimated detectors. In this specific simulated scenario,

the full-rank detectors CMT and CMOE present lower BER

with respect to the reduced-rank ones. This is probably due
to the higher number of degrees of freedom offered by the
MN -dimensional subspace. At lower SNR, significant BER
differences are not recorded.

V. CONCLUSION

In this contribution, we have proposed a full-rank regular-
ized MMSE detector for CDMA systems with small data sets.
Two new tapering matrix families have been introduced. We
have shown that the proposed CMT detector is quite effective
at high SNR. The study of algorithms for the choice of the
regularization parameter could be the subject of future work.

APPENDIX

PROOF OF THEOREM 1

Theorem 2: [9, p. 338] If R is an MN × MN Hermitian
matrix and T is an MN × MN correlation matrix, then

n∑

i=1

λi(R ◦ T) ≤
n∑

i=1

λi(R), ∀n = 1, ...,MN, (14)

where the eigenvalues {λi} are ordered in decreasing order.
By using Theorem 2 with n = 1, we have

λmax(R ◦ T) ≤ λmax(R). (15)

Moreover, by setting n = MN in (14), we obtain

MN∑

i=1

λi(R ◦ T) = tr(R ◦ T) = tr(R) =
MN∑

i=1

λi(R), (16)

which jointly to (14) with n = MN − 1 leads to

λmin(R ◦ T) ≥ λmin(R). (17)

Therefore, by (15) and (17), we have

χ(R ◦ T) =
λmax(R ◦ T)
λmin(R ◦ T)

≤ λmax(R)
λmin(R)

= χ(R). (18)
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