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Simple Equalization of
Time-Varying Channels for OFDM
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Abstract— We present a block minimum mean-squared error
(MMSE) equalizer for orthogonal frequency-division multiplex-
ing (OFDM) systems over time-varying multipath channels.
The equalization algorithm exploits the band structure of the
frequency-domain channel matrix by means of a band LDLH

factorization. The complexity of the proposed algorithm is linear
in the number of subcarriers and turns out to be smaller with
respect to a serial MMSE equalizer characterized by a similar
performance.

Index Terms— Equalization, intercarrier interference, OFDM,
time-varying channels.

I. INTRODUCTION

MULTICARRIER techniques such as OFDM gained a lot
of attention for wireless mobile communications [1].

Indeed, thanks to the cyclic prefix (CP), OFDM systems easily
equalize time-invariant multipath channels by 1-tap equalizers
[1]. However, the request for communications with high
mobility suggests that future OFDM designs should take into
account also the Doppler spread associated with time-varying
(TV) channels. This scenario complicates the equalization,
because a TV channel generates intercarrier interference (ICI),
thus destroying the orthogonality among OFDM data [2]-[5].

Recently, various techniques have been proposed to counter-
act such ICI effects in OFDM systems [6]-[12], and it has been
shown that nonlinear equalizers based on ICI cancellation gen-
erally outperform linear approaches [7]-[10]. Anyway, linear
schemes still preserve their importance. First, because linear
equalizers are usually simpler, and therefore less complex.
Second, because nonlinear schemes usually employ a linear
equalizer to obtain the temporary decisions that they use to
cancel out the ICI.

This letter presents a block MMSE equalizer that relies on
the LDLH factorization [13] and, in order to reduce complex-
ity, takes advantage of the band structure of the channel matrix
in the frequency domain. The overall complexity is linear in
the number of subcarriers, and quadratic in the bandwidth
[13] of the channel matrix. The proposed scheme is a block
equalizer, which jointly equalizes all the subcarriers, as in [7]
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and [10]. Those schemes, such as [6][8][9][12], which sep-
arately equalize each subcarrier discarding the data received
on the faraway subcarriers, are usually called serial equalizers.
The comparison between the proposed block MMSE equalizer
and a serial MMSE equalizer derived from [9] evidences a
reduction in complexity, while preserving performance.

II. OFDM SYSTEM MODEL

We consider an OFDM system with N subcarriers. Assum-
ing time and frequency synchronization, and employing a CP
length greater than the maximum delay spread of the channel,
the OFDM input-output relation for the i-th OFDM symbol
can be expressed by [6]-[10]

z−[i] = Λ− [i]a−[i] + n−[i] (1)

where z−[i] is the N×1 received vector, n−[i] is the N×1 addi-

tive noise vector, Λ− [i] is the N×N frequency-domain channel

matrix, and a−[i] is the N × 1 OFDM symbol, which contains
the frequency-domain data. Assuming that NA subcarriers are
active and NV = N −NA are used as frequency guard bands,
we can write a−[i] = [01×NV/2 a[i]T 01×NV/2]T , where a[i] is
the NA × 1 data vector. Due to the TV nature of the channel
Λ− [i] in (1) is not diagonal, and each diagonal is associated
with a discrete Doppler frequency, which introduces ICI.
Consequently, nontrivial equalization techniques are required.

III. LOW-COMPLEXITY EQUALIZATION OF TV CHANNELS

We assume that the equalizer does not make use of the
virtual subcarriers, which contain little signal power, and
could also be affected by interference originated from adjacent
transmissions. Moreover, we assume that Λ− [i] is known to the

receiver. In practice, Λ− [i] could be estimated as in [8][10][11].
Since we neglect the data received on the NV virtual subcar-
riers, by dropping the block index i, (1) becomes z = Λa+n,
where z and n are NA × 1 vectors obtained by selecting the
middle part of z− and n−, respectively, and Λ is the NA × NA

matrix obtained by selecting the central block of Λ− . In order
to recover a, several options are possible [7]. We focus on
linear block MMSE equalization, expressed by

âMMSE = ΛH(ΛΛH + γ−1INA
)−1z, (2)

where γ is the signal-to-noise ratio (SNR). Although the
MMSE outperforms other linear criteria [7], the matrix in-
version in (2) requires O(N3

A) flops [13], which represent a
significant burden when NA is high, such as for broadcasting
applications. However, as already documented in [6] and

1089-7798/05$20.00 c© 2005 IEEE



620 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 7, JULY 2005

[9], TV multipath channels produce a nearly-banded channel
matrix Λ. This property can be exploited to further reduce
complexity by means of an LDLH factorization [13] of
Hermitian band matrices.

A. Equalization by Band LDLH Factorization

Let us approximate the channel matrix Λ with the band
matrix B obtained by selecting the main diagonal, the Q
subdiagonals and the Q superdiagonals, of Λ. Thus B =
Λ◦T(Q), where ◦ denotes element-wise product, and T(Q) is
a matrix with lower and upper bandwidth Q [13] and all ones
within its band. Accordingly, (2) can be approximated by

âLDL = BH(BBH + γ−1INA
)−1z. (3)

Since M = BBH +γ−1INA
is a Hermitian band matrix with

lower and upper bandwidth 2Q, M−1 can be obtained by
using low-complexity decompositions such as the Cholesky
or the LDLH factorization, which are also characterized by
a small sensitivity to rounding errors [13]. We consider the
LDLH factorization because it does not require square roots.
The steps of the equalization algorithm are detailed below:

1) Choose Q, and construct the band matrix B = Λ◦T(Q);
2) Construct the band matrix M = BBH + γ−1INA

;
3) Perform the LDLH factorization of M, as expressed by

M = LDLH , where D is diagonal, and the triangular
factor L has lower bandwidth 2Q;

4) Solve the system Md = z by solving firstly the
triangular system Lf = z, secondly the diagonal system
Dg = f , and thirdly the triangular system LHd = g ;

5) Calculate âLDL = BHd.

The parameter Q can be chosen to trade off performance
for complexity. Obviously, a larger Q implies a smaller
approximation error and hence a performance improvement.
On the other hand, the complexity increases due to the
higher bandwidth of M. As a rule of thumb, we can adopt
Q ≥ �fD/∆f� + 1 [9], where fD is the maximum Doppler
frequency and ∆f is the subcarrier spacing.

B. Complexity Analysis

We evaluate the computational cost of the proposed
algorithm in terms of complex additions (CA), complex
multiplications (CM), and complex divisions (CD). Since
B has lower and upper bandwidth Q, the computation
of [BBH ]m,p in Step 2 requires 2Q + 1 − |m − p| CM
and 2Q − |m − p| CA. Hence, taking into account that
BBH is Hermitian and neglecting some smaller terms
in the complexity expression, Step 2 requires at most
(2Q2 +3Q+1)NA CM and (2Q2 +Q+1)NA CA. The band
LDLH factorization algorithm is reported in the following.

L = INA
; D = M ◦ INA

; v = 0NA×1;
for j = 1 : NA

m = max{1, j − 2Q} ; M = min{j + 2Q,NA} ;
for i = m : j − 1

[v]i = [L]∗j,i[D]i,i;
end
[v]j = [M]j,j − [L]j,m:j−1[v]m:j−1; [D]j,j = [v]j ;
[L]j+1:M,j = [M]j+1:M,j−[L]j+1:M,m:j−1[v]m:j−1

[v]j
;

end

The algorithm requires (2Q2 + 3Q)NA CM, (2Q2 + Q)NA

CA, and 2QNA CD. This result is obtained by observing
that the submatrix [L]j+1:j+2Q,j−2Q:j−1 is strictly upper
triangular. The two band triangular systems of Step 4 can be
solved by band forward and backward substitution [13]. Since
each algorithm requires 2QNA CM and CA, Step 4 requires
4QNA CM, 4QNA CA, and NA CD. Moreover, each element
of âLDL = BHd needs 2Q + 1 CM and 2Q CA. Therefore,
the whole algorithm requires roughly (4Q2 + 12Q + 2)NA

CM, (4Q2 + 8Q + 1)NA CA, and (2Q + 1)NA CD, leading
to a total of (8Q2 + 22Q + 4)NA complex operations.

We now compare the complexity of the proposed block
equalizer with the serial MMSE equalizer expressed by

[âserial]n = b̄H
n (B̄nB̄H

n + γ−1I2Q+1)−1z̄n, (4)

where n is the subcarrier index, z̄n = [z]n−Q:n+Q, B̄n =
[B]n−Q:n+Q,n−2Q:n+2Q, and b̄n = [B̄n]:,2Q+1. This equal-
izer is similar to the one adopted to initialize the iterative
symbol MMSE estimator of [9]. In the complexity analysis
of the serial MMSE, we have assumed that the inversion of
the Hermitian matrix in (4) is performed by means of the
LDLH factorization. This requires roughly half the number
of complex operations of standard inversion methods like the
Gaussian elimination [13]. We have also assumed that the
products involving different B̄n’s are performed by reusing
intermediate computations. The results of this complexity
analysis show that the serial MMSE equalizer (4) [9] requires
(4/3 Q3 + 10Q2 + 26/3 Q + 2)NA CM, (4/3 Q3 + 8Q2 +
17/3 Q + 1)NA CA, and (2Q2 + 3Q + 1)NA CD, leading
to a total of (8/3 Q3 + 20Q2 + 52/3 Q + 4)NA complex
operations.

For the serial MMSE, instead of using the LDLH factor-
ization, the matrix inversion for index n can also be done
by reusing the inverse computed for index n − 1, as in the
recursive inversion algorithm of [8]. In this case, without
assuming a banded channel matrix, the serial MMSE equalizer
of size 2Q + 1 has complexity O(QN2

A) [8]. For banded
channel matrices, by neglecting the complexity of the first
inversion, the serial MMSE equalizer (4) [9] requires about
(14Q2 + 15Q + 3)NA CM, (14Q2 + 7Q + 1)NA CA, and
(2Q + 1)NA CD, leading to a total of (28Q2 + 24Q +
5)NA complex operations. Therefore, the recursive inversion
approach is cheaper than LDLH factorization only for Q ≥ 4.
Hence, with respect to the proposed approach, the complexity
of the serial MMSE equalizer (4) [9] is 1.75 and 2.50 times
higher for Q = 2 and Q = 4, respectively. Asymptotically
(i.e., NA, Q → ∞), the complexity of the serial equalizer is
3.5 times higher than the proposed block approach.

C. Performance Comparison

We compare the uncoded BER performance of different
equalizers by means of simulation results. We consider an
OFDM system with N = 128, NA = 96, L = 8, and
QPSK modulation. We assume Rayleigh fading channels,
exponential power delay profile, and Jakes’ Doppler spectrum
with maximum Doppler frequency fD = 0.15∆f .

In Fig. 1, we compare serial and block approaches (assum-
ing a banded channel matrix or not) with Q = 2. For a fair
comparison with [8] and [9], we incorporated the presence



RUGINI et al.: SIMPLE EQUALIZATION OF TIME-VARYING CHANNELS FOR OFDM 621

of the guard frequency bands in the expressions of the serial
MMSE equalizers. Among the banded approaches, the serial
MMSE equalizer [9] has the best performance. Anyway, the
proposed block MMSE equalizer has almost the same perfor-
mance with a complexity reduction of 43% for Q = 2. The
small difference between the performance of the two banded
equalizers is mainly due to the use of the signal received on
the guard bands, and can be reduced further by applying the
block MMSE on an enlarged block of size NA + 2Q that
includes part of the guard bands. Worse performances are
obtained using the serial zero-forcing (ZF) equalizer [6], the
conventional 1-tap equalizer for time-invariant channels, and
an approximated block MMSE equalizer (Eq. 28 of [10]). On
the other hand, the non-banded approaches [8][7] outperform
the banded ones. However, the complexity is quadratic [8] or
even cubic [7] instead of linear in NA. In addition, the non-
banded equalizers rely on the assumption of a good estimation
of the small Doppler components (i.e., those that fall outside
the channel matrix band), which seems to be unrealistic for
practical SNR values. It is also worth noting that the BER
floor for the (non-banded) serial MMSE is lower than for the
proposed equalizer. This points out that the modelling error
due to the band matrix approximation Λ ≈ B is higher than
the error caused by using a serial instead of a block equalizer.

D. Further Developments

The proposed block MMSE algorithm opens the way to
the investigation of other topics that we cannot treat in detail
due to the lack of space. First, the proposed equalizer can
be easily combined with time-domain windowing to improve
the BER performance, as done in [9] for the serial MMSE
equalizer. In this case, since the noise is no longer white,
the matrix INA

in (3) should be replaced by the noise
covariance matrix, which in general is not banded. Hence,
the window design should be carried out within the class of
cosine-based windows, which leads to perfectly banded noise
covariance matrices. Interestingly, this class includes some
common windows such as Hamming, Hann, and Blackman.
Moreover, low-pass windows lead to noise covariance matrices
with an approximately banded structure, and therefore the
proposed approach can still be applied by approximating the
noise covariance matrix as banded. In most cases, the increase
in computational complexity is negligible: for the Hamming
window, only 3NA extra operations are needed.

The proposed equalizer can also form the basis for more
advanced equalizers based on decision-driven ICI cancellation.
Some non-exhaustive examples in the context of serial equal-
ization include the iterative estimator of [9] and the decision-
feedback ICI canceler of [8]. In addition, the proposed method
can be extended to multicarrier CDMA systems [14]. Finally,
studying the effects of channel estimation on banded and non-
banded equalizers is a topic of interest.

IV. CONCLUSION

We have proposed a block MMSE equalizer for OFDM sys-
tems over TV multipath channels. By making use of the band
LDLH factorization, we have shown that the complexity of
the proposed algorithm is O(Q2NA), and significantly smaller
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Fig. 1. BER comparison (Q = 2 for serial and banded approaches).

than for other MMSE approaches, while preserving good
performance. Future research topics include the incorporation
of windowing and the development of nonlinear equalizers.
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