
  

  

Abstract— This paper deals with the detection of pacemaker 
pulses in an electrocardiogram (ECG) waveform. In order to 
realize a pulse detector that is robust to a wide-band electro-
myographic (EMG) noise, we propose a (patent pending) fully 
digital approach that exploits a two step filtering strategy, fol-
lowed by a threshold comparison. By resorting to computer 
simulations which employ a synthetic and realistic ECG signal 
model, we show that our approach is particularly effective and 
it significantly outperforms a well known patented algorithm. 

I. INTRODUCTION 
The detection of pacemaker pulses in electrocardiogram 
(ECG) signals is requested to appropriately classify and in-
terpret the pacemaker interaction with the cardiac rhythm in 
the diagnostic bandwidth (DBW) (up to 150 Hz) [1]. 
A pacing pulse that is subject to a low-pass (LP) filtering in 
the DBW, can be significantly widened depending on the 
filter impulse response; similarly when it is subject to a 
high-pass (HP) filtering, a tail at the end of the pulse can be 
created [2] [3]. Thus, in order to not overwhelm the physio-
logical ECG signal, it is necessary to detect and remove pac-
ing pulses before applying any analog filter, which are typi-
cally used in ECG systems and typically work in the DBW. 
Due to the high frequency nature of the pacemaker pulses, 
many devices, like those proposed in [4] [5] [9], use dedi-
cated analog circuitry to detect and replace pacing pulses 
before the signal is passed to an analog-to-digital converter 
(A/D) (250-500 Hz). Other approaches, such those in [6] 
[7], combine analog and digital detection systems, while 
others [1] [2] propose fully digital detection systems. Spe-
cifically Helfenbein et al. [1] propose a digital detection 
algorithm for signals 1sampled in the DBW. Although the 
Helfenbein’s algorithm works quite well for almost all the 
signals tested in [1], due to its sensitivity to electromyog-
raphic (EMG) noise it is also prone to missed and false de-
tections and faces even further problems with pacemakers 
using shorter pacing pulses. Conversely, Herleikson sug-
gests in [2] to up-sample the ECG signal and to detect the 
pacemaker pulses exploiting their high frequency content. 
In order to provide a flexible and upgradable architecture, 
we propose, as in [2], a (patent pending) fully digital detec-
tion algorithm that does not require any analog filtering in 
the DBW before the ECG A/D conversion. To this end, Sec-
tion II focuses on the overall ECG system architecture, Sec-
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tion III presents the digital signal filtering approach, while 
Section IV describes the proposed algorithm. The detection 
performance are shown in Section V, where they are also 
compared with the performance of the algorithm proposed 
by Herleikson in [2]. 

II. ECG SYSTEM ARCHITECTURE 
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Figure 1. Overall block diagram of a possible ECG system 

Fig. 1 represents a possible architecture for an ECG system 
that is capable to employ the algorithm we describe in Sec-
tion IV. The ECG signal of a patient with a pacemaker is 
processed by a wide-band analog circuit whose aim is to 
amplify the signal and adjust its dynamic range to the A/D 
input. After the signal is LP filtered in order to avoid alias-
ing, and digitally converted employing a sampling frequency 

kHz 10=Sf  that prevents the pacing pulses widening, we 
identify the pacemaker pulses using the algorithm described 
in Section IV. Once the pacing pulses are detected, they can 
be easily removed at the high sampling frequency Sf  by 
simply replacing  a portion of the signal before and after the 
time instant of the detected pulse with a signal average over 
the recent past, similarly to what described in [2]. Succes-
sively, it is possible to down-sample the digital signal for a 
standard ECG monitoring system, and/or to exploit its high 
sampling rate to detect late potentials, as explained in [13]. 

III. SIGNAL MODEL AND FILTERING 
Consider a patient with a pacemaker, whose discrete ECG 
signal [ ]s n , at sampling frequency Sf , is expressed by 
 ][][][][ nwnpnxns ECG ++= , (1) 

where [ ]ECGx n  is a typical noiseless ECG, [ ]w n  the additive 
noise, and [ ]p n  the potentially present pacemaker signal. 
In order to correctly detect the pacemaker pulses, it is impor-
tant to exploit their structure and statistical characterization, 
as well as those of the noise and the ECG. To this end, it is 
well known [1] that the most relevant frequency content of 
an ECG signal is within the [0, 150] Hz DBW and its dy-
namic range is approximately 1 mV, with its local maximum 
at the R wave peak. Additionally, the ECG may be corrupted 
by different noises, such as 
• the baseline wander (BW) [ ]BWw n , due to the patient res-

piration and movement (0.05 Hz to 1 Hz) [10], 
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• the power-line interference (PLI) [ ]PLIw n , which consists 
of a 50/60 Hz pickup, 

• the electromyographic (EMG) noise [ ]EMGw n , introduced 
by the muscle electrical activity (wide-band content). 

Consequently, the overall noise can be modeled as 
 ][][][][ nwnwnwnw EMGEMGPLIPLIBWBW σσσ ++= , (2) 

where 2
BWσ , 2

PLIσ , 2
EMGσ  are the powers of each noise. 

The pacing pulses in [ ]p n  are conversely characterized by 
significant high frequency energy due to their sharp ampli-
tude transitions at the rising and falling edges of the pulse. 
With a certain approximation, the pulse can be represented 
by a square wave, whose typical duration lies within 0.1 to 2 
ms, and whose amplitude is bigger than 0.5 mV [2]. 
Thus, in order to identify the pulses by exploiting their 
structure, we propose the following 3-step procedure: 
S1) HP filtering of the overall signal [ ]s n  in order to re-

move great part of [ ]ECGx n , as well as the noise contri-
bution due to the BW and to the PLI; 

S2) pacing pulse enhancing with respect to the wide band 
EMG by means of a non-linear transformation; 

S3) final detection of the pacing pulses by comparing the 
obtained signal with a given threshold TV . 

A. Linear High-pass Filtering (S1) 
A possible approach to remove the natural ECG signal 

[ ]ECGx n  is a simple differential filtering, as proposed by 
Herleikson in [2]. This approach has the nice property to 
enhance the rising and falling edges of the pacing pulse, by 
generating the filtered signal [ ]HPs n , as expressed by 

 ])3[]2[(]1[][][)( −+−−−+= nsnsnsnsns H
HP , (3) 

which is nothing but an average of two consecutive two-step 
finite differences (derivatives). Exploiting (3), the informa-
tion about the presence of a pacing pulse resides mostly on 
the two samples located at the rising and falling edges of the 
pulse, which are typically characterized by opposite ampli-
tude and by a distance equal to the pulse duration. 
In order to improve the robustness of the pulse detection to 
the noise contribution, we propose to generalize (3) by ex-
tending the time observation window, as expressed by 

 ])3[]2[(]1[][][ knsknsnsnsnsnew
HP −−+−−−−+= . (4) 

Denoting with DT  the pulse duration and with D Sd T f=  the 
corresponding number of samples, Fig. 2 shows that each 
pacing pulse in [ ]s n  generates in [ ]new

HPs n  two trapezoidal 
waves with opposite amplitude, whose discrete duration Fl  
and distance Fd  (total duration 2TOT F Fd l d= + ) are 
 FFF lkddkdl −+=++= )2,max(    );3,1min( . (6) 

Clearly, the parameter k  in (4) controls the filter time-span 
and, consequently, the cut-off frequency Cf  of the associ-
ated HP frequency response )(ωnew

HPH  that is expressed by 
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where ][nhnew
HP  is the filter impulse response of (4). The fre-

quency response )(ωnew
HPH  is shown in Fig. 3, where 0=k  

represents the Herleikson filter in (3). 
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Figure 3. Magnitude of the linear filter frequency response. 

It is clear from Figs. 2 and 3 that higher values of k  make 
the pulse detector more robust to wide-band EMG noise, and 
conversely worsen the removal of the LP natural ECG sig-
nal. This fact suggests to choose k  as a good trade-off 
among these two competitive aspects, as confirmed by simu-
lations in Section V, where we clarify how to choose k  to 
optimize the detection performance in several scenarios. 

B. Non-Linear Filtering (S2) 
Our aim is to detect pacing signals that are potentially em-
bedded in [ ]HPs n , whose time-domain structure is character-
ized by a rapid raise followed by a rapid fall (as  in Fig. 2), 
and is different from the structure of the wide-band EMG 
noise. A simple idea is that a pacing event can be identified  
by comparing the amplitude [ ]HPs n  with its surrounding 
samples, as better clarified in the next section. To this end 
we consider an observation window with a time-domain 
support ( ) [ ,  ... , ]N n N n− = −w , where the apex ( )−  means that 
the window is extended towards the past samples that we 
use to define the ( 1)N + -dimensional vector 

 [ ]( ) [ ] [ ] ,  [ 1] ,   , [ ]N HP HP HPn s n N s n N s n− = − − +s " .  (7) 

The associated variational series ( )[ ]N n−v  is defined as the 
sorted version of the vector ( )[ ]N n−s , by 

(1) ( 2 ) ( 1)( ) (1) (2) ( 1)  ...[ ] ,  ,   , ,    N
HP HP HP

N
N HP HP HP s s sn s s s +− + ≤ ≤ ≤⎡ ⎤= ⎣ ⎦v … . (8) 

In order to improve the detection robustness to the noise 
contribution, similarly to what we proposed by (4), we con-
sider a support window 

2

( )
, 2 2[ 1,  ... , ,  ]N k n k N n k n− = − − + −w  

and the corresponding vector 
2

( ) [ ]N, k n−s , composed by the 
current sample and by N  contiguous past samples at a dis-
crete temporal distance 2k i+ , 10 −≤≤ Ni , as expressed by 

[ ]
2

( )
2 2[ ] [ 1] , ,  [ ],  [ ]N, k HP HP HPn s n k N s n k s n− = − − + −s " , (9) 

and, similarly to (8), we name 
2

( ) [ ]N, k n−v
 
its variational series. 

The vector signal 
2

( ) [ ]N, k n−s  in (9) and 
2

( ) [ ]N, k n−v
 

permit to 
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compare the current sample [ ]HPs n  with the past ones and 
consequently to enhance the rising edges of a pacing pulse 
with respect to the noise. In order to avoid a false pulse de-
tection induced by a sudden voltage rise caused by an elec-
trode-skin contact loss, we consider also the vector 

2

( ) [ ]N, k n+s  
in the support window )(

, 2

+
kNw , and its variational series 

2

( ) [ ]N, k n+v , composed by the current sample and other N sam-
ples in the future, as expressed by 

[ ]
2

( )
, 2 2[ ] [ ] ,  [ ] ,   , [ ( ) 1]N k HP HP HPn s n s n k s n k N+ = + + + −s " .(10) 

We define ( )( [ ],  )NR n i−v  ( )],[( )( inR N
+v ) as the position 

(rank) of the sample ][ insHP −  ( ][ insHP + ) in ( )[ ]N n−v  
( ( )[ ]N n+v ) and mNN nmnV ]][[)],[( )()( −− = vv  ( ( )mnV N ],[)(+v ) as the 
value of the sample whose rank is m  in ( )[ ]N n−v  ( ( )[ ]N n+v ). 
Instead of considering only the signal derivative in the time 
domain, we propose to analyze the derivative in the sorted 
domain. Specifically, we compare the amplitude of the cur-
rent sample [ ]HPs n , with the closest neighbor in the varia-
tional series 

2

( ) [ ]N, k n−v  and 
2

( ) [ ]N, k n+v . Thus, similarly to what 
proposed in [8] in a different context, we define the differen-
tial rank signal ( )dr v  of a vector v  as 

( )
( )
( )

⎪
⎩

⎪
⎨

⎧
+<+−
+>−−

=
otherwise,0

21)0,( if),1)0 ,( ,(][
21)0,( if),1)0 ,( ,(][

NRRVns
NRRVns

dr HP

HP

vvv
vvv

v
  , (11) 

and we propose to use ( )][)(
, 2

ndr kN
−v  and ( )][)(

, 2
ndr kN

+v , rather 
than [ ]HPs n , to determine by a simple threshold approach if 

[ ]s n  corresponds to a pacing pulse or not. 
In a wide band noise environment, the two differential rank 
signals ( )][)(

, 2
ndr kN

−v  and ( )][)(
, 2

ndr kN
+v  can increase the de-

tector performance with respect to the use of [ ]HPs n . In-
deed, if we would simply use the filtered signal [ ]HPs n , 
some noise spikes that occur into the support window 

2,kNw  
could produce some false detections. On the contrary, the 
differential rank signal, which represents the signal deriva-
tive in the sorted domain, allows the detector to avoid false 
detections because it would compare, with a high probabil-
ity, a noise spike with another noise spike of quite the same 
amplitude. It is clear that if there is only a single noise spike 
into a support window 

2,kNw , the detector may occurs in a 
false detection also with the differential rank signals. 
Clearly, the false detection probability is reduced by a wide 
support window 

2,kNw , which decreases the probability to 
collect a single noise spike. However N  has to be optimized 
because a too wide support window 

2,kNw , would also in-
crease the probability of a noise spike with amplitude similar 
to the pace pulse, which could cause a missed detection. 
The time-guard 2k  in the variational series 

2

( ) [ ]N, k n−v
 
and

 
2

( ) [ ]N, k n+v  avoids the comparison of a pace pulse sample with 
other pace pulse samples in the sorted domain. Thus, a high-
er 2k  increases the detector robustness, although it is useless 
a value higher than the pulse discrete duration TOTd , defined 
by (6). Section V will clarify this points by showing detec-
tion performance for different values of 2k  and N . 

IV. PACING PULSE DETECTION (S3) 
A simple approach, consists in comparing [ ]HPs n  with a 
fixed threshold TV . In order to avoid multiple detections 
associated to a single pulse, possibly induced by the discrete 

pulse duration Fl  in Fig. 2, we identify as the pulse position 
the first value n  that satisfies ( ) TkN Vndr >− ][)(

, 2
v  and ( ) TkN Vndr >+ ][)(

, 2
v . Successively, we inhibit the search for a 

pulse for a refractory period R TOTn d≥ . In order to minimize 
the pulse position error, we want to force the discrete instant 
n  as close as possible to the correct pulse position, which is 
the rising edge of the trapezoidal wave shown in Fig. 2. To 
this end, and to use a single positive threshold, we force the 
first trapezoidal wave to be always positive, which may not 
be true because the pacemaker pulse may appear negative 
for some ECG leads. Thus, we apply the non-linear filtering 
to the absolute value [ ]HPs n  of the signal, rather than di-
rectly to [ ]HPs n . 
Summarising, once the overall ECG signal [ ]s n  has been 
filtered by (4), the proposed detector identifies a pacing 
pulse at the discrete instant n  if both the differential rank 
values ( )][~ )( ndr N

−v  and ( )][~ )( ndr N
+v  overpass  a positive thre-

shold TV , as expressed by, 
 

 TkNTkN VndrANDVndr >> +− ])[~(        ])[~( )(
,

)(
, 22

vv . (12) 

Specifically, 
2

( )
, [ ]N k n−v�  and 

2

( )
, [ ]N k n+v�  in (12) represent the var-

iational series, defined as in (8), for the absolute values 
|][| )(

, 2
nkN

−s  and |][| )(
, 2

nkN
+s  of the vector [ ]new

HPs n , respec-
tively. It is obvious that a high value of TV  increases the 
robustness to false detections induced by noise contribu-
tions, but it also increases the probability to miss the detec-
tion of true pacing pulses, as verified by simulation in the 
next section. 

V. SIMULATION RESULT 
In order to assess the performance of the detection algo-
rithm, we use two standard parameters that are namely the 
Sensitivity ( )S  and the Positive Predictivity ( )PP  [1], de-
fined as )/( FNTPTPS +=  and )/( FPTPTPPP += , where 
the false negative ( )FN  denotes the number of missed de-
tections, the false positive ( )FP  represents the number of 
extra false detections, and the true positive ( )TP  is the num-
ber of correct detections. Practically S  represents the frac-
tion of real events that are correctly detected, and PP  repre-
sents the fraction of detections that correspond to real pacing 
events. 
The detection algorithm considers a refractory period 

ms 20/ == sRR fnt , which is a trade-off between the re-
quest to avoid multiple detections of the same pulse, and the 
need of detecting closely pulses produced by dual chamber 
pacemakers. We consider a detected pulse to be a correct 
detection if its discrete instant n  belongs to a 12 ms win-
dow centered in the discrete instant of the correct pacing 
pulse. This choice depends on the fact that this time interval 
would corresponds to less than 0.5 mm in a standard 12-lead 
ECG thermal printing and because we can potentially re-
place the 12 ms portion of the signal before and after the 
time instant of the detected pulse with the signal average 
over the past 2 ms, similarly to [2]. 
To check the performance of the proposed solution, we con-
sider that the signal [ ]ECGx n  in (1) is synthetically generated 
according to the dynamical model proposed in [12]. We do 
not consider herein the contribution of the BW to the noise, 
e.g. 02 =BWσ  in (2), because its LP frequency distribution 
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cannot affect the detector performance after the HP filtering 
described in Section III.A, as we also verified by simula-
tions, that are not shown herein. The PLI [ ]PLIw n  is gener-
ated as a sinusoid whose frequency PLIf  is modeled as a 
Gaussian random variable with mean 50 Hzfm = , variance 

2 21 Hzfσ = , and phase uniformly distributed in [0,2 ]π . We 
model the EMG noise [ ]EMGw n  as a zero mean AWG noise 
that is LP filtered at a cut-off frequency EMG

cutf . 
We evaluate the performance of the pacemaker detector for 
different noise-to-signal ratios ( )NSR  associated to each 
noise component and defined as 2 2

EMG EMG ECGNSR σ σ=  and 
22
ECGPLIPLINSR σσ= . 

Finally, the pacing pulse is modeled as a square wave with 
short duration [0.1,  2] msDT ∈ , very low duty-cycle 
(< 2 pulses/240 ms) and quite high amplitude 0.5 mVa = , 
as summarized in [2] and [11]. All the waveforms have been 
simulated assuming a discrete-time band resolution of 
5 kHz , which means a sampling frequency 10 kHzSf = . 
In order to highlight the best values of the parameters k , 

2k , N  and TV  for the algorithm we proposed and described 
in Section IV, we simulated S  and PP  for different values 
of each parameter. By means of what we define as the 
“equal S  and PP  criterion” (ESPP), we consider a parame-
ter value as “good” when it provides good performance for 
both S  and PP . To facilitate the interpretation of the pa-
rameters k , 2k , and N , we use their continuous counter-
parts k ST k f= , 

2 2k ST k f=  and N ST N f=  in the figures 
legends. When it is not differently specified, we use the fol-
lowing set of parameters values: ms 1 =DT , ms 1 =kT , 

ms 10 =NT , ms 4
2

=kT  and mV 0.35 =TV . 
In Figs. 4-8 we first check the algorithm behavior with re-
spect to the wide-band noise, and we show the detection 
performance versus EMGNSR  for different values of the 
parameters k , 2k , N  and TV , when 2 0PLIσ =  in (2). 
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Figure 4. Performance for different values of kT . 

Specifically Fig. 4 shows how the performance are influ-
enced by the discrete time-span k  of the HP filter in (4). 
Fig. 4 demonstrates that a higher value of kT  gives a better 
S , because it makes the detector more robust to wide-band 
noise, but it also demonstrates that for a kT  higher than the 
pulse duration DT , both the sensitivity S  and the positive 
predictivity PP  cannot improve, as motivated in Section III. 
Fig. 5 shows the detection performance for different 

2kT , 
which represents in (9) and (10) the time distance of the 
current sample ][nsHP  from the past and the future samples. 

It is clear that the choice of 2k  does not significantly affect 
the PP , while the sensitivity S  improves by increasing 

2kT . 
However, it is easy to understand that the detection perform-
ance cannot further improve when 2k  becomes higher than 
the total distance TOTd  defined by (6). 
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Figure 5. Performance for different values of 

2kT . 
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Figure 6. Performance for different values of NT . 

Fig. 6 shows the performance of the proposed algorithm for 
different  sizes NT  of the two time windows defined in (9) 
and (10). It can be observed that, for a given EMGNSR , a 
bigger NT  improves the PP , while on the contrary, it gives 
a worse S . The ESPP criterion we previously introduced 
would suggest ms 10=NT  as the right choice. 
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Figure 7. Performance for different values of TV . 

Fig. 7 shows the detection performance for different values 
of the threshold TV . The ESPP criterion would suggest 

mV 35.0=TV  as the best choice. However this fact could 
be misleading because we have been using in this set of 
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simulations the optimal parameters values identified in Figs. 
4-6 by the ESPP criterion, when the threshold was exactly 

mV 35.0=TV . Thus, as suggested by Fig. 6, if for instance 
we increase TV , which favors PP  with respect to S , we 
should at the same time reduce NT . This multiple parameter 
optimization problem is however not considered herein, due 
to lack of space. Summarizing, Figs. 4-7 highlight that, in a 
white wide-band EMG scenario, the Herleikson approach 
fails to correctly detect pacing pulses, whereas our method 
works quite well even at high EMGNSR . 
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Figure 8. Performance for different values of TD. 

Fig. 8, which shows the algorithm sensitivity to the pulse 
duration DT , highlights that a wider pacemaker pulse facili-
tates the detection performance. 
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Figure 9. Performance with respect to 

PLINSR , 
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Figure 10. Performance for Hz 500=EMG

cutf  and kHz 1=EMG
cutf .  

Fig. 9 shows the performance versus PLINSR , for fixed 
0.3EMGNSR =  and 0.5EMGNSR = , where it is clear that the 

PLI does not significantly influence the algorithm perform-

ance. This is true in all the scenarios, if k  is not too high. 
Fig. 10 compares the proposed algorithm with Herleikson 
algorithm [2] when 2 0PLIσ =  and for a band-limited EMG 
noise, with a maximum frequency Hz 1000500 ÷=EMG

cutf . 
We choose 0k =  because, by means of Fig. 3, it is obvi-
ously the best choice for a noise that is already LP band-
limited, as we also verified by simulations not shown herein. 
Fig. 10 shows that, when the EMG noise has a limited band-
width, although Herleikson algorithm [2] performs quite 
well, it is completely outperformed by the proposed solu-
tion. It is interesting that 0k =  means using the same HP 
filtering of [2], which consequently highlights the effective-
ness of the non-linear filtering we introduced. 

VI. CONCLUSIONS 
This paper has presented a new algorithm for the detection 
of pacemaker pulses in ECG signals, based on a 3-step pro-
cedure. In order to identify the pacemaker pulses, in the 
first-step a linear filter removes the natural ECG signal, in 
the second-step a non-linear filter enhances the pace pulses 
with respect to the wide band noise, and in the third-step the 
detector simply compares the filtered signal with a thresh-
old. The main characteristic of the proposed method, which 
always outperforms a widely used patented algorithm [2], is 
the detection robustness in wide-band noise environments. 
Moreover, by a reduced set of parameters the algorithm can 
be flexibly adapted to several different scenarios. Future 
works will focus on automatic and adaptive selection of 
these parameters, and on the exploitation of the potential 
correlation between the ECG complex and the pacemaker 
pulses positions. 
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