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ABSTRACT Digital baseband predistortion is a well
known technique to compensate for AM/AM and AM/PM
amplifier non linearity. The practical implementation of a
flexible digital predistorter suggests introducing some
adaptation strategy to the predistortion technique in order
to take count of the changes in the non linear
characteristics due to ageing, temperature or channel
switching of the amplifier. The most effective adaptation
criterions are generally based on the estimation of the
residual non linear distortion at the output of the
predistorted amplifier. A simple criterion is to compare the
amplifier output with the predistorter input. This
comparison requires an estimation of the input-output time
delay of the amplification chain. Aim of this work is to
analyse the sensitivity of the adaptation algorithm to errors
in the time delay estimation and to noise sources like
quantization and inter symbol interference.

I. Introduction
Bandpass non-linearity like the one of high power
amplifiers can be compensated by several techniques like
negative feedback, LI.N.C, feed-forward amplification and
signal predistortion. The great improvement in the last
decade in digital technologies has produced a renewed
interest for their digital implementation that guarantees a
sharper correction capability. In this field digital baseband
predistortion is a technique based on the inversion of the
AM/AM and AM/PM distortion curves that characterise a
bandpass non linear amplifier [1]. In practical situations the
AM/AM and AM/PM distortion curves can change
depending on the environmental variations like temperature,
biasing voltages, ageing, channel switch and so on. By this
reason the predistortion curves that invert the ones of the
amplifier must contemplate some adaptation strategy. A
simple kind of adaptation can be realised by the monitoring
of some characteristic parameters that influence the
AM/AM and AM/PM curves. In this way it is possible to
guarantee a gross adaptation of the system in each situation
by choosing the best predistortion curves from a curve set
previously defined as function of the monitored parameters
[2]. This approach introduced in the past for analogic
predistorter, can be easily extended to digital predistorter,
but clearly does not guarantee the best predistortion in each
situation because of the limited number of parameters and
predistortion curves that can be practically considered. The
first effective adaptation system was introduced for a data
predistorter [3] and it was easily extended to signal

predistortion [4], [5], [6], [7]. All the systems considered in
these papers store the values of the predistortion curves in
some look up tables. The adaptation consists in the
adjusting of each stored value by the estimation of an input-
output error in the amplification chain. The referred papers
analyse the convergence property of the algorithm in
different situation and predistortion architecture, but all of
them make the assumption to correctly compare the input
with the output of the amplification chain by means of a
perfect synchronisation. In this paper the sensitiveness of
the adaptation algorithm to input-output synchronisation
will be investigated as well as the sensitiveness to signal
quantization and filtering. The basics concept of
predistortion is outlined in the next session. A possible
predistortion architecture is introduced in session II. The
adaptation algorithm and its implementation will be
discussed in session III. The simulation results are shown in
session IV

II. Baseband Predistortion
Non-linear power amplifiers are usually modelled as
bandpass non linearity [1]. If the input signal s(t) is
expressed by complex base-band representation as

)t(je)t(R)t(s ϑ⋅= (1)

the non linear distorted output sd(t) is represented by

[ ] [ ][ ])t(R)t(j
d e)t(RH)t(s Φ+ϑ⋅= (2)

where [ ]H R  and [ ]Φ R  are known as the AM/AM and the

AM/PM distortion curves respectively. Baseband
predistortion compensates the non linear distortions
introduced by RF power amplifiers [1][3][4][5] by two
curves [ ]RA  and [ ]RΨ  that globally invert [ ]RH and

[ ]RΦ . The predistorted amplifier is characterised by a

completely cancelled AM/PM and by a residual AM/AM
that works like a soft-limiter because of the maximum
output power of the amplifier. This paper adopts the Saleh
model [8] of non linear amplifiers with the AM/AM and
AM/PM distortion curves represented in Fig.1 and
expressed by (3).
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A digital signal predistorter does not operate on the data at
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the output of a symbol generator, but on the digital
interpolated baseband signal as shown in Fig.2.
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Fig.1 AM/AM and AM/PM distortion curves of the RF
power amplifier
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Fig.2 Adaptive Predistorted Amplifier (Baseband model)

The predistorter uses a look-up table to store the
predistorting curves [ ]RA  and [ ]RΨ  as shown in Fig.3

where the predistortion action is realised in polar
coordinates, by two different implementations. The first one
stores the predistorted envelope in the look-up table while
the other stores the predistorted gain. Both of them also
store the predistorted phase.
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Fig.3 Polar realisation (Envelope or Gain) for the
baseband predistortion subsystem

Other systems can realise the same predistortion strategy
working in cartesian coordinates and making use of the
complex gain representation of the AM/AM and AM/PM
expressed by (4) where E[R] and G[R] respectively
represent the predistorted envelope and the predistorted
gain.
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III. Adaptive Predistortion
Fig.2 represents the general architecture of a baseband
adaptive predistortion scheme, where the Timing Circuit
and the Error Circuit are outlined. The Error Circuit has the
role to estimate the input-output non-linear error of the
predistorted system and provide an error signal to the
Predistortion Circuit to update the contents of its lookup
tables. The adaptation algorithm can be implemented both
in polar or cartesian co-ordinates. The polar realisation is
more intuitive because it is directly related to the AM/AM
and AM/PM distortions introduced by the HPA. Moreover
it was shown [3] that the algorithm convergence is
guaranteed in polar co-ordinates while in cartesian is not.
The better performance of the polar realisation was also
outlined in [7]. As a consequence the polar implementation
is considered in the following. The envelope and phase of
the s(t) input are subtracted from the correspondent
components of the a(t) amplifier output in order to estimate
the input output error for the predistorted amplifier. The
two error signals obtained in this way are weighted by two
real coefficients Rα  and θα  to provide the correcting terms

for the values that are stored in the predistortion tables of
Fig.3. The two error signals are analytically expressed by
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(5)

where K represents the desired linear gain for the
predistorted amplifier.
The xR  input envelope addresses each value in the

Predistortion Tables. The values stored in the table at the n-
th step of the adaptation algorithm are expressed by (6)
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The general expression of the adaptation algorithm for each
value of the AM/AM and AM/PM compensation curve can
be expressed by (7)

[ ]{ }onnn1n kfAff −⋅α−=+ (7)

where

( ) 0kfA oo =−  (8)

is the equation to be solved to realise predistortion, and
)R(ff xoo = is the correct value to be stored in the

predistortion tables for all the possible 
xR input levels.

The algorithm convergence is assured only if the derivative
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of the non linear function [ ]  ⋅A  is different from zero [3].

Under this hypothesis (9) is a general expression for the
adaptation coefficients, where 0α  is a real positive constant

and [ ]1,0∈η  to guarantee the convergence.

η

α=α
n

0
n

(9)

The magnitude oα  of the adaptation coefficients has to be

chosen as a compromise between adaptation speed and
noise rejection. If a noise contribution or a measurement
error d(t) affects the non linear output, the recursive
equation (7) becomes (10).

[ ]{ }nonnn1n dkfAff +−⋅α−=+ (10)

ne represents the error between the real solution of

equation (8) and the value assumed at the n-th step of the
recursive algorithm as expressed by (11).

onn ffe −= (11)

It was shown [3] that its mean value { }neE converges to

zero as ’n’ approaches infinity with a convergence speed that
depends on the ’c’ parameter expressed in equation (12)

( )o
’

o fAc α= (12)

The ( ) 1n
2
e +σ  error variance clearly depends on the 2

dσ
noise variance but also on the oα , η , and [ ]  ⋅’A
parameters [3].
The fixed step size coefficient ( 0=η ) gives the best

convergence speed, even if is more sensitive to noise
contribution in the feedback path [3]. For this particular
case the following relation expresses indeed the error
convergence

{ } { } ( ) )cnexp(ec1eEeEe 1
n

11n1n −⋅<−⋅== ++ (13)

where { }  E ⋅ is the expected value operator and ’c’ must be

in the [0,2] range. The variance ( ) 1n
2
e +σ  is finite even for

high values of the iteration number of the recursive
algorithm and it is directly proportional to the noise

contribution variance 2
dσ  and is expressed by
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This sensitivity to disturbance in the recursive algorithm is
clearly exacerbated for points of the non linear function

[ ]  ⋅A  with a derivative function that approaches zero. If a
non uniform step algorithm is employed the error

variance ( ) 1n
2
e +σ  converges to zero for large values of n but

with a lower convergence speed [3].

The previous analysis takes count of uncorrelated noise
contribution in the demodulation of the amplifier output.
However other sources of disturbance to the instantaneous
algorithm can be considered. One source is represented by
the quantization errors introduced by the A/D and D/A
converters in the adaptive digital predistorter. Using a
sufficient number of bits in the digital devices can reduce
this error source. Another error source is the memory
introduced in the system by the filtering stages between the
baseband predistorting device and the RF amplifier.  These
filters produce a sort of inter-symbol interference (ISI)
between consecutive values at the Predistorter output and at
the Amplifier output. It means that the input to the amplifier
at a certain instant ’n’, for each value of the predistortion
table is not exactly the one that is stored in the predistortion
table itself.  Indeed, it is corrupted by the interference of the
other values previously emitted by the predistorting device
and stored in different positions of the predistortion table.
In the same way also the amplifier output used to estimate
the convergence error is affected by an inter-symbol
interference.
Finally the Timing Circuit can introduce a great error
source. The Timing Circuit has the role to estimate the loop
delay of the adaptive system and compensate it, in order to
allow the Error Circuit to correctly compare the
Predistortion Circuit Input with the amplifier Output.
The effects of all these contributions to the algorithm
convergence will be analysed by simulation in the next
session.

IV. Simulation Results
The adaptively predistorted amplifier shown in Fig.2 was
simulated for several values of the adaptation coefficients

Rα and θα , with and without perturbation to the recursive

non linear algorithms expressed by (6).
The digital to analogue conversion at the output of the
predistorting device was taken in count by a signal
interpolation that makes the Fs amplifier simulation
frequency, Ns times greater than the predistorter sample
frequency Fc (Ns >=1). The Fc sample frequency was also
considered Nc time (Nc >= 4) greater than the generation
frequency Fgen of the input signal in order to correctly
represent it in the non linear environment, because of
spectral regrowth. The input signal was modelled like a
complex random signal with uniform envelope (and phase)
distributions so that the convergence speed of each value of
the predistortion tables is not influenced by its probability
of occurrence. It is possible in this way to concentrate the
attention on how the non linear AM/AM and AM/PM
shapes influence the convergence speed and precision. If it
is not the case like for OFDM signals characterised by a
Rayleigh envelope distribution a possible approach is to
work with non uniformly addressed look up tables.
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The convergence behaviour will be analysed by two
parameters. The first, shown in the upper side of Fig.4-5-6,
is the Root Mean Square (RMS) Input-Output Error for
both envelope and phase, and represent a parameter to
estimate the global convergence of the algorithm. The
second, shown in the lower side of Fig.4-5-6, is the relative
error of the found predistorting solution on respect to the
ideal one. It represents a parameter to estimate the punctual
convergence of the algorithm for each value of the
predistortion tables and is defined as expressed by (14).
The input signal bandwidth was imposed to be Fgen/2.

( )
o

n
nr f

ff
e 0−

= (14)

 The results shown in the upper sides of Fig.4 outline how
the convergence speed is proportional to the magnitude of

the adaptation coefficients Rα and θα , as expected from

theory. The lower side of the figure shows the relative
errors for both AM/AM and AM/PM, when the adaptation
time reaches the value corresponding to the last right end
point of the upper figures. All the three curves show a good
convergence for the intermediate points, for both the
AM/AM and AM/PM. Indeed, the derivative function of the
non linear distortions introduced by the amplifier does not
approach zero in that region. On the contrary the amplifier
AM/AM exhibits a quasi zero derivative function for input
envelope that approach one, while the AM/PM derivative is
very close to zero for input envelope that approaches zero.
In this regions the convergence speed is highly lower.
However without any kind of disturb (i.e. quantization
noise, ISI, input-output synchronisation errors) to the
recursive equation the algorithm should converge to a zero
RMS error. This is not the case however as shown by the
RMS error shape for 5.0R =α=α θ , that remains constant

after about 1e6 predistorter samples. The finite dimension
of the predistortion tables (i.e. 1024 in this case) imposes
this limit to the convergence. Moreover care must be used
to compare the three relative errors curves (both for
AM/AM and AM/PM). Indeed, the ones for

01.0  ,  1.0R =α=α θ  correspond to sample times at which

the convergence has not reached the minimum value. This is
why the relative errors are higher than for 5.0R =α=α θ  in

the regions where the AM/AM and AM/PM derivative
functions approaches zero. However in the middle zone of
the predistortion curves, where convergence is already
obtained, the relative errors are lower than for

5.0R =α=α θ , as expected from theory. It is useful to point

out that the proposed predistorter architecture makes the
AM/PM convergence possible if the AM/AM curve has
already converged in the same region [5]. This is the reason
why the AM/PM predistortion curves exhibits high relative
errors also for high values of the input envelope even if the

amplifier AM/PM derivative function does not approach
zero in that region. In Fig.5 the same kind of figures helps
to analyse the effects of signal quantization in the
predistorter when 1.0R =α=α θ . The figures outlines a low

sensitiveness of the AM/AM predistortion tables for a bit
number that spans from 12 to 20. On the contrary the
AM/PM RMS error suggests using at least 16 bits. The
AM/PM relative error is more sensitive to quantization in
the lower part of the curve because its quasi zero derivative
function amplifies the natural higher sensitiveness of small
signals to uniform quantization.
The effects of ISI and time synchronisation errors are
outlined in Fig.6 for 1.0R =α=α θ . Both the upper figures

and the lower ones show how the convergence property is
seriously affected by ISI between adjacent input values. The
figures show the system performance for 1.0R =α=α θ  as

function of the fractional delay and the Na number of the
adaptation samples, and comparing it with the ideal
situation. The fractional delay is defined as the ratio
between the input-output delay error estimation and the
generation time gengen F1T = , while Na is defined as the
number of consecutive errors that are averaged before
updating each predistortion table value. It is possible to see
that even without any time delay error estimation the ISI
contribution seriously degrades the convergence behaviour
that reach a floor level for the RMS envelope error of about
1.5e-3. For a fractional delay equal to 1/64 the noise floor
grows to 3e-3 without a significant difference on respect to
the only ISI situation. Greater penalties are introduced for
fractional delays equal to 1/32 or 1/16 that seem to be
unacceptable. The relative error for each value of the
predistortion table exhibits a stronger sensitiveness for low
input envelope. It depends on the fact that the ISI
contribution power is the same for all the input envelope
and consequently the lower address of the AM/AM
predistortion table are characterised by a worst signal to
noise ratio. The situation is worst for the AM/PM
predistortion table that combines the natural higher
sensitiveness of the lower input values with its derivative
function close to zero. This fact is clearly outlined by the
lower part of figure 6 where the divergence of the algorithm
for low input envelope is shown. This divergence is the
responsible for the unacceptable RMS phase error that
never reaches 1e-2. Moreover figure 6 shows that averaging
the magnitude and phase errors on Na=6 consecutive errors
do not give a significant protection from ISI and
synchronisation errors

V. Conclusions
Sensitivity of an adaptive digital predistortion system to
quantization, ISI and time delay synchronisation was
analysed by simulation. The obtained results outline how
the technique is highly sensitive to ISI in the adaptation
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loop, which makes the algorithm non instantaneous. The
sensitiveness to quantization errors is lower and suggests
representing the digital signal by 16 bits. The input-output
synchronisation error should not exceed 1/64 of the input
generation time in order to maintain an acceptable distance
from the ideal predistortion curve. Moreover the
dependence of such sensitivity on the AM/AM and AM/PM
shapes (i.e. derivative function) was also pointed out. Some
benefits on a reduction of such sensitiveness can be
obtained by averaging the input-output error of each level
of the predistortion tables on a high number of consecutive
values. However the way to overcome or reduce the high
sensitiveness to ISI interference needs further studies and
will be object of future works
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Fig.4 Algorithm Convergence without Quantization, ISI, and Time Synchronisation Errors as function of Rα and θα
(Upper) Input-Output Root Mean Square Errors as function of time

(Lower) Predistortion Tables Relative Error at the last sample time of Upper Figures
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Fig.5 Algorithm Convergence without ISI and Time Synchronisation Errors as function of quantization Bits for 1.0R =α=α θ

(Upper) Input-Output Root Mean Square Errors as function of time
(Lower) Predistortion Tables Relative Error at the last sample time of Upper Figures
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Fig.6 Algorithm Convergence with Quantization and ISI as function of Time Synchronisation Error (% Tgen) and Number of Sample Averages
(Upper) Input-Output Root Mean Square Errors as function of time

(Lower) Predistortion Tables Relative Error at the last sample time of Upper Figures


