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Bayesian Estimation of a Gaussian Source in
Middleton’s Class-A Impulsive Noise
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Abstract—This letter derives the minimum mean square error
(MMSE) Bayesian estimator for a Gaussian source impaired by
additiveMiddleton’s Class-A impulsive noise. Additionally, as low-
complex alternatives, the letter considers two popular suboptimal
estimators, such as the soft-limiter and the blanker. The optimum
MMSE thresholds for these suboptimal estimators are obtained by
iteratively solving fixed point equations. The theoretical findings
are corroborated by simulation results, which highlight the MSE
performance penalty of the suboptimal estimators may be negli-
gible with respect to the optimal Bayesian estimator (OBE). Note-
worthy, the proposed estimators can be extended to any noise, or
observation error, that can be modeled as a Gaussian-mixture.

Index Terms—Blanker, Gaussian-mixtures, impulsive noise, in-
terference,Middleton’s Class-A noise, MMSE estimation, soft-lim-
iter.

I. INTRODUCTION

I NTERFERENCE and noise with impulsive non-Gaussian
distributions may impair the performance of several sys-

tems, including communications, controls, sensors and so
forth. Middleton proposed widely accepted canonical models
for interference, which characterize “intelligent” (e.g., infor-
mation bearing), as well as “non-intelligent” (e.g., natural or
man-made) noises [1]. Middleton’s noise models were widely
investigated to identify the interference behavior [1], [2], to
estimate their canonical parameters [3], and to detect finite
alphabets in digital communications [4], [5]. However, to the
best of the author knowledge, the MMSE optimum Bayesian
estimator (OBE) for a Gaussian source in Class-A impulsive
noise, derived in this letter, is still lacking in the literature.
The use of the OBE may be restricted in some applications

due to complexity constraints, especially if impulsive noise pro-
tection is granted by analogic equipments. In this case, sim-
pler suboptimal devices, such as the the soft-limiter (SL) or the
blanking-nonlinearity (BN), may be used to clip or null out, re-
spectively, the received signal when its magnitude overpasses a
given threshold. For the two suboptimal estimators, the compu-
tation of the optimum thresholds (in the MMSE sense) can be
formulated as a fixed-point problem [6], which always admits a
solution by fast iterative approaches.
Practically, such OBE, SL-estimator (SLE), and BN-es-

timator (BNE) are helpful when the quantity of interest is
modeled, or approximated, by a Gaussian probability density
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Fig. 1. System model.

function (pdf). This is the case for instance of multi-carrier
communication systems, such as asymmetric digital subscriber
lines (ADSL) [7] and power-line communication (PLC) [8],
which face cumbersome impulsive noise scenarios [9]–[11].

II. SYSTEM MODEL

Let’s consider a source with a zero-mean Gaussian pdf
, impaired by a

Class-A impulsive noise , as expressed by

(1)

and a possible estimator of , as shown in Fig. 1.
Specifically, the Class-A noise pdf is expressed by [1]

(2)

which is clearly a Gaussian-mixture, where
is the Poisson-distributed probability that noise sources simul-
taneously contribute to the impulsive event, and

is the corresponding expected value [2]. Moreover,

is the noise power, where is the im-
pulsive power, is the power-ratio with the AWGN,
and . Thus,
the Class-A model is totally characterized by the canonical pa-
rameters , , and . Specifically, low values of identify
rare and highly peaked impulsive noises and, conversely, high
values of makes the noise more similar to an AWGN [2].

III. OPTIMUM BAYESIAN ESTIMATOR (OBE)

Exploiting Bayes rules, the MMSE Bayesian estimator of
given the observation , is expressed by [12]

(3)

where represents the conditional pdf of the observed
data for a given source . Due to the fact that the impulsive
noise is independent of , it is well known that

[13], as expressed by

(4)

1070-9908 © 2013 IEEE



BANELLI: BAYESIAN ESTIMATION OF A GAUSSIAN SOURCE 957

Fig. 2. OBE for , , and several values of .

where stands for the convolution integral, and it is exploited
that the convolution of two Gaussian pdfs generates another
Gaussian pdf, with sum of the variances [13]. Observing (1),
it is also evident that is expressed by

, which plugged in (3) leads to

(5)

By using to indicate the Fourier transform
(FT) of , it is reminded that

, with . Thus, using
, and exploiting FT properties, the FT of the

integral in (5) is expressed by

(6)

where the last equality comes from
. Consequently, by inverse-FT duality

property

(7)

Summarizing, (5) can be expressed by

(8)

Equation (8) highlights how the OBE depends on the source
average power , and the noise canonical parameters , ,
and , through and . The input-output characteristic of
the OBE is plotted in Fig. 2 for several values of the parameter

Fig. 3. Suboptimal estimators.

, which controls the peakness of the impulsive noise [2]; it is
evident that for high values of , when tends to a zero-
mean Gaussian pdf, the OBE tends to the well known linear-
MMSE estimator [12], expressed by

(9)

Conversely, for lower values of , when the noise is charac-
terized by rare and highly peaked impulses, the OBE shows
a highly non-linear nature, by roughly limiting , or
blanking , the observed values that overpass cer-
tain thresholds. Noteworthy, the OBE in (8) is easily extended
to any other Gaussian-mixture noise .

IV. BAYESIAN SOFT LIMITER ESTIMATOR (SLE)

To protect device integrity, it is often requested to contrast
impulsive receiver noise before A/D conversion. In this case,
implementation of the OBE in (8) by analogic hardware is
rather complicated, especially if the OBE should be adaptive
to changes of the average powers and , and/or the noise
peakness factors , and . Furthermore, also when digital
implementations after A/D conversion is possible, the use of
(8) may be prevented by either memory, or computational,
or power-budget constraints. This is the case for instance of
battery-powered sensors, deployed in huge number in the envi-
ronment to monitor some physical parameter for a long time,
and where battery life and very low-cost is an issue. Thus, this
section investigates a simple suboptimum estimator, namely the
SL shown in Fig. 3(a), which is widely employed to contrast
impulsive noise [14], and adds robustness to the system by
clipping the signal values exceeding a given threshold . In this
case, the only parameter to optimize in the Bayesian sense is
the clipping threshold , which obviously would depend on the
noise parameters , , and , as well as on the source power
. Meaningfulness of such an optimization, which leads to

the SLE, is also suggested by the OBE shapes in Fig. 2, which
for certain noise parameters (e.g., ) resemble the
SL estimator of Fig. 3(a).
The output of the SL in Fig. 3(a) is expressed by a non-linear

input-output characteristic . The SL estimation
error depends on the selected
threshold , as well as on the statistical properties of the source
and the noise . This is expressed by

(10)

The SLE estimator is defined by selecting the threshold

(11)
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that minimizes the MSE cost function . Thus, in order to
find the optimal threshold it is necessary to solve

(12)

where stands for the first partial derivative of
with respect to . By substituting (2), (10), and

its partial derivative in (12), after tedious derivations detailed
in [15], it is proved that is the solution of the following
fixed-point (FP) equation

(13)

Due to lack of space, it is omitted the proof that a solution of the
FP (13) always exists, as detailed in [15], where it is also proved
that in (11) is locally convex for ,
i.e., that is locally a contraction mapping [6]. Thus,
any iterative solution of (11) starting from
converges to the MSE minimum, as the succession

converges to the exact FP solution [6]. Con-
sequently, can be numerically approximated by the fol-
lowing iterative algorithm

A1: Iterative algorithm for optimal SL threshold

1. set and ;

2. while and

3. ;

4. ;

5. end

6. set .

In algorithm A1, represents the accuracy that is re-
quested for the approximated FP solution to stop within
a maximum number of iterations. Obviously, other
iterative numerical approaches can be used to solve (13),
such as the Newton—Rapson method [6] to find the root of

, or equivalently to solve .

V. BAYESIAN BLANKING ESTIMATOR (BNE)

Fig. 2 suggests that for highly impulsive noise behaviors (e.g.,
, the OBE shape resembles another quite used

estimator, i.e., the BN shown in Fig. 3(b) and proposed in [16].
Similarly to the SLE, the estimation error

is expressed by

,
(14)

and, as detailed in [15], the optimum can be obtained as
the solution of the FP equation

(15)

Although the FP problem admits a unique solution, as detailed
in [15], differently from , is not a con-
traction mapping and, consequently, in (15) is not
an attraction for the iterative algorithm A1. However, defining

, an iterative algorithm that converges
to the FP is obtained from A1 by setting , and by
substituting the 3rd step with

3.

To quicken convergence, whose speed is controlled by ,
the 3rd step now solves the equivalent problem
. Noteworthy, increases monotonically with [15]:
thus, when the (trivial) optimal BNE threshold is

.

VI. COMPUTER SIMULATIONS

The Middleton’s Class-A noise has been generated by the
toolbox [17]. The optimal thresholds for the MMSE SL and BN
are obtained by the algorithm A1 using , for
the BN, and without loss of generality . Fig. 4–Fig. 6
show the sensitiveness of the MSE performance with respect
to the thresholds values, for both the SL and the BN, and let to
appreciate their performance penalty with respect to the OBE.
The MSE plots in Fig. 4–Fig. 6 are obtained by generating
observed samples in (1), in order to guarantee that the MSE
sample-mean converges to the theoretical MSE (available in
[15]) also when the impulsive noise is characterized by very
rare events (i.e., by lower values of ). The squares and circles
in Figs. 4–6 are the MSE values obtained for the thresholds
computed by algorithm A1. As theoretically predicted, com-
puter simulations confirm that these thresholds are optimal in a
MMSE sense. Interestingly, at least one among the optimal SL
and BN is characterized by negligible (minimum) MSE penalty
with respect to the OBE, and could safely be used as a valuable
low-complexity alternative. This fact was somehow suggested
by the OBE shapes in Fig. 2, which highly resemble either a SL
or a BN, for several values of the canonical Class-A parameters.
Finally, Fig. 7 shows the optimal SL andBN thresholds, obtained
when , together with the associated number of itera-
tions requested by A1 to converge. Generally, convergence is
really fast (especially for the SLE), although for some specific
values of SNR, , and , theBNmay request some longer time.

VII. CONCLUSIONS AND FUTURE WORK

The MMSE Bayesian estimator for a Gaussian source im-
paired by impulsive Middleton’s Class-A interference has been
derived. Furthermore, two popular and sub-optimal estimators,
namely the soft-limiter and the blanker, have been optimized
in the MMSE sense. The proposed Bayesian estimators can
be easily adapted to any Gaussian source impaired by any
Gaussian-mixture noise.
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Fig. 4. MSE curves for and .

Fig. 5. MSE curves for and .

Fig. 6. MSE curves for and .

Other criteria, rather than the MMSE, could be used to set
the optimal thresholds of the BN and the SL, as for instance
the maximum-SNR (MSNR) criterion, proposed in [16] and
[14]. Note that, while MMSE and MSNR are equivalent in pure
AWGN scenarios [18], this is not the case when the noise is a
Gaussian-mixture, which leads to a non-linear MMSE estimator
(see also [15] and [19]). Whether it is better the MSNR or the
MMSE criterion, depends on the specific application and design
constraints: this investigation is left for future works where, in
the light of [19], it will be also possible to establish theoretical
expressions and relationships between the MSNR and MMSE
estimators.

Fig. 7. Optimal SL and BN thresholds ( , ).
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