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Abstract—This paper analyzes the quality of service (QoS)
of scheduling algorithms for heterogeneous users in multi-
user (MU) wireless systems that take advantage from a cross-
layer design with both adaptive modulation and coding (AMC)
and automatic repeat request (ARQ). By developing a general
theoretical framework based on a finite-state Markov chain,
we analytically evaluate the average delay, the packet-loss rate
(PLR) and the throughput of a scheduling algorithm based on
the channel condition, the buffer occupancy, and the number of
retransmissions, of users belonging to different service classes.
The key assumption of our analysis, i.e., the independence
of the stationary states of different users, highly reduces the
computational complexity while preserving a sufficient accuracy.
To present the proposed analysis, we also suggest an effective
scheduling policy suitable for users belonging to different service
classes, compliant with the WiMAX standard. The good match
between analytical and simulated performance validates our
theoretical findings, and enables the proposed approach to be
used for cross-layer optimization.

Index Terms—Adaptive modulation and coding (AMC), auto-
matic repeat request (ARQ), cross-layer design, QoS analysis,
scheduling, WiMAX.

I. INTRODUCTION

IN wireless multimedia communications, the presence of
multipath fading and time-varying signal-to-noise ratio

(SNR) degrades the system performance and hence highly
affects the quality of service (QoS) perceived by the user. Due
to the increasing request for high data-rate services, a number
of techniques have been proposed to counteract the negative
effects of fading channels, sometimes designed in a cross-
layer fashion [1]-[4]. For instance, adaptive modulation and
coding (AMC) [4]-[13] allows for a throughput increase at the
physical layer, by using a transmission mode (TM) with higher
bit rate whenever the SNR condition is favorable. Moreover,
automatic repeat request (ARQ) [7]-[17] at the data link layer
further improves the performance by reducing the packet loss
rate (PLR), at expense of some additional delay.

The SNR loss caused by fading channels influences the
QoS not only in single-user (SU) systems, but also in multi-
user (MU) scenarios, where the users may have different QoS
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requirements, such as in WiMAX [18]. In wireless MU sys-
tems, the scheduling task becomes crucial, since the negative
effect of fading can be overturned by scheduling a user with
good channel condition. The throughput increase provided by
channel-aware schedulers is usually significant, because of
the high probability that at least one user has good channel
condition. This effect is known as MU diversity (MUD) [19].
Anyway, the design of the scheduling algorithm, as well as
the QoS performance analysis, becomes challenging.

Herein we focus on cross-layer scheduling that combines
AMC with ARQ. A smart combination of AMC and ARQ
can increase the throughput and reduce the PLR [8]-[13],
because the error-correcting capabilities of ARQ allow for
higher modulation rates. However, the additional delay asso-
ciated with the packet retransmissions can be unacceptable,
e.g., for real-time (RT) applications. Thus, a main goal is to
find a scheduling algorithm with a good trade-off between
average delay and PLR, depending on the specific application.
An equally important goal is the capability of providing a
QoS performance analysis for scheduling algorithms whose
decisions are based on AMC-ARQ parameters, such as the
channel quality, the buffer occupancy, and the number of
retransmissions, when users have different QoS requirements.

Among the cross-layer designs for SU scenarios, the au-
thors of [11] propose a delay-constrained AMC scheme and
analyzes the PLR and the throughput by means of a finite-state
Markov chain [14]. In [20], the delay constraint is incorporated
into the rate constraint, and the power-rate adaptation strategy
is obtained using the effective capacity. The policy obtained
in [20] turns out to be a trade-off between time-domain
waterfilling, which is suitable when the delay constraint is
loose, and truncated channel inversion, which is suitable when
the delay requirement is stringent. In addition, a joint AMC-
ARQ design is proposed in [13], where the TM is dynamically
chosen using the instantaneous SNR. From the probability
distribution of the user state, closed form expressions for the
PLR, the average delay, and the throughput are obtained [13],
enabling the throughput maximization via exhaustive search.
However, the model of [13] only considers an SU scenario.

Delay-optimal MU designs include [21]-[24]. In [21], it is
shown that the delay-optimal policy assigns the transmission
to the user with longest connected queue (LCQ), i.e., to the
user with longest buffer occupancy among those users whose
channel condition is good enough for transmission. Even if
[21] assumes the same QoS for all users, it is clear that,
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when the users have different QoS requirements, delay-optimal
schedulers cannot disregard the queue backlog of the users
[22]. A delay-optimal power control and subcarrier allocation
strategy is proposed in [23] for orthogonal frequency-division
multiple access (OFDMA) systems. In [24], a delay-optimal
power control and precoder adaptation policy is designed for
multiple-input multiple-output systems. In both [23] and [24],
heterogeneous users are considered. In [12], which differently
from the delay-optimal strategies [21]-[24] also includes ARQ,
the MU design exploits statically pre-assigned frequencies
that depend on the user conditions (average SNR, buffer size,
packet arrival rate, TM, QoS). A theoretical analysis for the
MU scenario is provided in [8]-[9], where a statistical charac-
terization of the QoS is addressed by deriving the cumulative
distribution functions for the throughput and the delay. Al-
though multiple service classes are considered, the theoretical
analysis in [8]-[9] assume an ARQ with infinite number of
retransmissions, i.e., without loss of packets induced by the
channel. Moreover, the analytical model of [8]-[9] is applied
to scheduling policies, such as max-rate (MR), round-robin
(RR), and weighted RR (WRR), that do not consider the buffer
occupancies (and the completed number of retransmissions).
Differently, delay-optimal scheduling policies like [21] and
[22] are strongly based on the buffer occupancies.

In this paper, we propose a theoretical QoS analysis for a
broader class of scheduling algorithms that deal with hetero-
geneous users with different QoS requirements. Specifically,
we consider a GI/M/1 service queue, where the users have
finite buffer lengths and maximum number of retransmissions.
One of the main features of our analysis is its reduced
complexity, which is weakly dependent from the number of
users. This is obtained by exploiting the key idea that the state
probabilities of different users can be assumed as independent.
This approximation, which is reasonable in several scenarios,
is characterized by a high level of accuracy, as confirmed by
extensive simulation results. To simplify the presentation, we
develop the analysis for a specific scheduling algorithm that
we deem significant and representative, where the different
service classes are borrowed from WiMAX (RT, non-real-
time (NRT), and best-effort (BE) users) [18]. However, the
extension to a broader class of scheduling policies, including
WRR, is theoretically equivalent, although tedious in some
cases.

The main contributions of this paper, as well as the most
important differences with the previous literature, can be
summarized as follows.

∙ Differently from [11] and [13], which deal with AMC
and ARQ in the SU case, our theoretical analysis focuses
on the MU case, with heterogeneous users belonging
to different QoS classes. Although our approach can be
considered as a generalization of [13] to the MU case,
we remark that a direct generalization of [13] would
require a complete characterization of the states of all
the users, leading to an exponential complexity in the
number of users. On the contrary, our approach avoids
the exponential complexity.

∙ Differently from [8]-[9], we consider scheduling policies
that are explicitly based also on buffer occupancies and
number of retransmissions. These scheduling schemes

are of great interest because they enable several trade-
offs between maximum aggregate throughput (given by
MR scheduling), maximum user fairness (given by RR
scheduling), and minimum average delay (given by LCQ
scheduling in ON/OFF channels). While our approach
is valid for a large class of scheduling algorithms, the
approach in [8]-[9] can be easily applied only to a
subclass of algorithms that are not based on the queue
lengths, such as MR, RR, and WRR.

∙ Differently from [25], we provide a theoretical char-
acterization of the QoS performance. The philosophy
of our scheduler is similar to that in [25], but our
algorithm reduces the buffer occupancy rather than the
instantaneous packet delay: this way, by Little’s Theorem
[14], also the average delay is reduced. Moreover, in our
algorithm, RT users are favored, in order to reduce their
instantaneous delay.

The rest of this paper is organized as follows. Section II
presents the system model, and Section III the scheduling
algorithm. In Section IV, we develop our theoretical QoS
analysis based on the state probability distribution, whose
computation is described in Section V. The simulation re-
sults of Section VI validate our analytical framework, and
Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless link shared by 𝑈 users. We focus
on the uplink, but it should be observed that the presented
model is valid for the downlink too. The 𝑈 users are divided
in three WiMAX service classes [18]: 1) RT polling service,
with guaranteed throughput and delay, e.g., video streaming;
2) NRT polling service, with guaranteed throughput, e.g., FTP;
3) BE, with no guarantees, e.g., e-mail. Constant bit rate
users are not considered because their scheduling is trivial.
We indicate with 𝑆𝑅𝑇 , 𝑆𝑁𝑅𝑇 and 𝑆𝐵𝐸 the set of users
belonging to RT, NRT and BE classes, respectively, using
the class order number when opportune, e.g., 𝑆𝑅𝑇 ≡ 𝑆1,
𝑆𝑁𝑅𝑇 ≡ 𝑆2 and 𝑆𝐵𝐸 ≡ 𝑆3. All the users belonging to the
same class have identical traffic statistics and QoS constraints.
The considered uplink system can be summarized as follows:
first, the receiver (base station) collects information about the
user conditions (channel quality, buffer occupancy, number of
retransmissions) to perform the scheduling decision; after the
scheduling decision, the receiver feeds back to the scheduled
user the TM to be used. In the whole process, AMC is used
to increase the throughput, while ARQ is used to reduce the
PLR. Anyway, our detailed assumptions are listed below.
A1: At the physical layer, time is divided in intervals of fixed
length 𝑇𝑓 seconds. In each interval, denoted by coherence time
interval (CTI), 𝐾 ≥ 1 data-link packets of fixed size (𝑁𝑃 bits)
can be transmitted, depending on the channel quality (AMC
TM). Therefore, the CTI is divided in 𝐾 ≥ 1 slots, one for
each packet, as shown in Fig. 1. For instance, in high-quality
channels, the AMC selects a higher-order constellation of size
𝑀 and a convolutional code with high code rate 𝜁, so that
many data-link packets 𝐾 are mapped into a single CTI, as
expressed by

𝐾 =
𝑊𝑇𝑓
𝑁𝑃

𝜁 log2 𝑀, (1)
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Fig. 1. State and substate transition for user 𝑗 at time epoch 𝑖.

where 𝑊 is the available bandwidth (see Table I, where
𝑊 = 1.08 MHz, 𝑇𝑓 = 2 ms, and 𝑁𝑃 = 1080). We as-
sume negligible overhead, perfect time synchronization among
users, and ideal power control (i.e., all the users have the same
average SNR).
A2: The propagation channel is modeled by a Nakagami-m
frequency-flat block-fading channel over each CTI [26]-[27],
i.e., the channel is assumed constant for 𝑇𝑓 seconds. The
channel variation is captured by a finite-state Markov chain
[28], where each channel state is associated to a TM. The
AMC partitions the SNR range into 𝑁 + 1 non-overlapping
intervals [13] that correspond to the TMs of Table I. The
boundary points of the SNR intervals are calculated using the
same target packet-error rate (PER) for all the TMs (see Eqs.
1-4 in [13]), as usual in AMC systems. Notably, in OFDMA
systems, (frequency-selective) multipath channels are turned
into a set of parallel frequency-flat channels, one for each
subcarrier. Therefore, the flat-fading channel assumption is
compliant with OFDMA-based systems in frequency-selective
channels, such as WiMAX [18].
A3: Depending on the instantaneous SNR at each decision
epoch, the AMC selector at the receiver chooses the TM, i.e.,
the modulation-coding pair in Table I. After the scheduler
decision, the TM is fed back to the transmitting user. The TM
choice is based on perfect channel state information (CSI),
and the feedback channel is assumed ideal, with no errors and
zero latency [13].
A4: We assume Poisson packet arrival processes with packet
rate 𝜆𝑆𝑔 packets/s, for any class 𝑔 ∈ {1, 2, 3}. However,
our model is quite general, since it can handle any GI/M/1
queue, with possibly different arrival processes from class
to class. The data-link layer packets, whose length is 𝑁𝑃
bits, are mapped on physical layer time slots with different
durations, according to the current TM. The size of the
buffer of user 𝑗 is 𝐵𝑗 packets. Users of the same class
have the same buffer size: 𝐵𝑗 = 𝐵𝑆1 = 𝐵𝑅𝑇 , ∀𝑗 ∈ 𝑆𝑅𝑇 ,
𝐵𝑗 = 𝐵𝑆2 = 𝐵𝑁𝑅𝑇 ,∀𝑗 ∈ 𝑆𝑁𝑅𝑇 , and 𝐵𝑗 = 𝐵𝑆3 = 𝐵𝐵𝐸 ,
∀𝑗 ∈ 𝑆𝐵𝐸 .
A5: The error detection at the receiver, by means of cyclic
redundancy check codes, is assumed perfect. The packets of
user 𝑗 are dropped either when the transmitter buffer is full,
or after 𝑅𝑗 retransmissions, where 𝑅𝑗 = 𝑅𝑆1 = 𝑅𝑅𝑇 , ∀𝑗 ∈
𝑆𝑅𝑇 , 𝑅𝑗 = 𝑅𝑆2 = 𝑅𝑁𝑅𝑇 , ∀𝑗 ∈ 𝑆𝑁𝑅𝑇 , 𝑅𝑗 = 𝑅𝑆3 = 𝑅𝐵𝐸 ,
∀𝑗 ∈ 𝑆𝐵𝐸 .

TABLE I
TRANSMISSION MODES

Transmission Mode TM0 TM1 TM2 TM3 TM4 TM5

Channel index 𝑐
(𝑖)
𝑗

0 1 2 3 4 5

Modulation - BPSK QPSK QPSK 16-
QAM

64-
QAM

Code Rate 𝜁 - 1/2 1/2 3/4 3/4 3/4
Channel quality
𝐾

𝑐
(𝑖)
𝑗

slots/CTI 1 1 2 3 6 9

III. SCHEDULING POLICY

In this section, we propose a heuristic scheduling algorithm
specifically tailored to heterogeneous users. Our aim is to
provide a low PLR and a low average delay to RT users, and a
high throughput and a low PLR to NRT users. BE users have
low priority and therefore will have high throughput and low
delay only when there is enough bandwidth. In other words,
we want a scheduling algorithm that gives high throughput
while preserving some user fairness, summarized by the user
class constraints. For instance, also the WRR scheduling [8]
can handle different user classes, but it produces a waste
of channel resources, because the fixed time-slot assignment
does not enable any MUD [19], i.e., the diversity gathered
by scheduling the user with the best channel condition. Ob-
viously, an efficient scheduling algorithm should exploit the
MUD, which boosts the system throughput with respect to the
SU scenario. In this view, we propose a centralized algorithm
that acts at the beginning of each CTI. For simplicity, we
assume instantaneous decisions of the scheduler, based on
perfect knowledge of all the user states.

The state 𝝍(𝑖)
𝑗 of user 𝑗 at time instant 𝑡𝑖 is defined as

𝝍
(𝑖)
𝑗 = (𝑐

(𝑖)
𝑗 , 𝑞

(𝑖)
𝑗 , 𝑟

(𝑖)
𝑗 ), (2)

where 𝑐(𝑖)𝑗 is the channel state, 𝑞(𝑖)𝑗 is the buffer occupancy, and

𝑟
(𝑖)
𝑗 is the number of retransmission attempts. We associate to

𝑐
(𝑖)
𝑗 the channel rate 𝐾

𝑐
(𝑖)
𝑗

as in Table I. We also define the

utility function
𝜙
(𝑖)
𝑗 = 𝐾

𝑐
(𝑖)
𝑗

𝑞
(𝑖)
𝑗 /𝐵𝑗 , (3)

which combines the channel quality 𝐾
𝑐
(𝑖)
𝑗

and the normalized

buffer occupancy 𝑞
(𝑖)
𝑗 /𝐵𝑗 , thus enabling a trade-off between

throughput and delay. Besides, with reference to the Venn
diagram in Fig. 2, we define the following user sets:

∙ 𝑆
(𝑅𝑇 )
𝐹𝐵 = {𝑗 ∈ 𝑆𝑅𝑇 : 𝑞

(𝑖)
𝑗 = 𝐵𝑗 ∧ 𝑇𝑀

(𝑖)
𝑗 ∕= 𝑇𝑀0} is

the set of RT users with full buffer and a channel good
enough for transmission;

∙ 𝑆
(𝑅𝑇 )
𝐹𝐵𝑟 = {𝑗 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵 : 𝑟

(𝑖)
𝑗 ≥ 𝑟

(𝑖)
𝑘 , ∀𝑘 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵 } is the

subset of 𝑆(𝑅𝑇 )
𝐹𝐵 that groups the RT users with maximum

number of retransmissions 𝑟
(𝑖)
𝑗 ;

∙ 𝑆
(𝑅𝑇 )
𝐹𝐵𝐾 = {𝑗 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝑟 : 𝐾

(𝑖)
𝑗 ≥ 𝐾

(𝑖)
𝑘 , ∀𝑘 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝑟 }

represents the subset of 𝑆
(𝑅𝑇 )
𝐹𝐵𝑟 with RT users with the

best channel quality;
∙ 𝑆

(𝑥𝑅𝑇 )
𝑀Φ = {𝑗 ∈ 𝑆𝑅𝑇 ∪ 𝑆𝑁𝑅𝑇 : 𝜙

(𝑖)
𝑗 ≥ 𝜙

(𝑖)
𝑘 , ∀𝑘 ∈ 𝑆𝑅𝑇 ∪

𝑆𝑁𝑅𝑇 ∧ 𝜙
(𝑖)
𝑗 > 0} collects both RT and NRT users with

maximum (nonzero) utility function 𝜙
(𝑖)
𝑗 ;
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Fig. 2. Users partitioning employed by the scheduling algorithm.

∙ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 = {𝑗 ∈ 𝑆

(𝑥𝑅𝑇 )
𝑀Φ : 𝑟

(𝑖)
𝑗 /𝑅𝑗 ≥ 𝑟

(𝑖)
𝑘 /𝑅𝑘, ∀𝑘 ∈

𝑆
(𝑥𝑅𝑇 )
𝑀Φ } is the subset of 𝑆

(𝑥𝑅𝑇 )
𝑀Φ that groups users

with maximum normalized number of retransmissions
𝑟
(𝑖)
𝑗 /𝑅𝑗 ;

∙ 𝑆
(𝐵𝐸)
𝑀Φ = {𝑗 ∈ 𝑆𝐵𝐸 : 𝜙

(𝑖)
𝑗 ≥ 𝜙

(𝑖)
𝑘 , ∀𝑘 ∈ 𝑆𝐵𝐸 ∧ 𝜙

(𝑖)
𝑗 >

0} represents the set of BE users with maximum and
nonzero 𝜙

(𝑖)
𝑗 ;

∙ 𝑆
(𝐵𝐸)
𝑀Φ𝑟 = {𝑗 ∈ 𝑆

(𝐵𝐸)
𝑀Φ : 𝑟

(𝑖)
𝑗 ≥ 𝑟

(𝑖)
𝑘 , ∀𝑘 ∈ 𝑆

(𝐵𝐸)
𝑀Φ } is the

subset of 𝑆(𝐵𝐸)
𝑀Φ with maximum 𝑟

(𝑖)
𝑗 .

Using these sets, the proposed algorithm is expressed in
Table II, where “%” stands for “comment.”

We remark that the proposed scheduling algorithm specifi-
cally tries to reduce the delay of RT users by first assigning
the priority to RT users with full buffer, which actually are
experiencing the maximum instantaneous delay. This way, also
the PLR of RT users is reduced, because it is less probable
that their buffers become full and packets are discarded. Since
the utility function 𝜙

(𝑖)
𝑗 in (3) is proportional to the buffer

occupancy, due to the Little’s Theorem [14], the average
packet delays of RT and NRT users are also reduced. In
addition, BE transmission is authorized only when all RT and
NRT users have empty buffers or experience deep fading.

The main difference of the proposed scheduling with respect
to [25] is that it considers buffer occupancies instead of
instantaneous delays. Therefore, our scheduler grants service
to RT users with full buffer, while in [25] users have the
priority when their packet delay is higher than a temporal
parameter called “time deadline,” whose choice affects the
performance. A performance comparison between the two
approaches is given in the simulation section.

IV. QUEUING ANALYSIS OF AMC-ARQ-BASED

SCHEDULING

Our aim is to derive a probabilistic characterization of the
state vector (2) of a generic user. We first summarize the SU
analysis carried out in [13], which we subsequently extend to
the MU case.

TABLE II
SCHEDULING ALGORITHM

01 if 𝑆(𝑅𝑇 )
𝐹𝐵 ∪ 𝑆

(𝑥𝑅𝑇 )
𝑀Φ ∕= ∅

02 if 𝑆(𝑅𝑇 )
𝐹𝐵 ∕= ∅ % RT with full buffer

03 transmission randomly assigned to user ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵𝐾 ;

04 else

05 if 𝑆(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑅𝑇 ∕= ∅ % RT without full buffer

06 transmission randomly assigned to user ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑅𝑇 ;

07 else % NRT transmission

08 transmission randomly assigned to user ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑁𝑅𝑇 ;

09 end
10 end
11 else

12 if 𝑆
(𝐵𝐸)
𝑀Φ𝑟 ∕= ∅ % BE transmission

13 transmission randomly assigned to user ∈ 𝑆
(𝐵𝐸)
𝑀Φ𝑟 ;

14 else
15 no user transmits;
16 end
17 end

A. Single-User Analysis

The channel state transitions are modeled by an embedded
Markov chain, described by the (𝑁 + 1)× (𝑁 + 1) transition
matrix P𝐶 , whose elements [P𝐶 ]𝑚,𝑛 = 𝑃𝑚,𝑛 are derived by
a level crossing rate analysis [29]. The complete SU state is
described by 𝝍(𝑖) in (2). If 𝑐(𝑖) = 𝑛, i.e., the AMC selector
chooses TM𝑛, then the CTI is divided in 𝐾𝑐(𝑖) = 𝐾𝑛 slots of
duration 𝑇𝑓/𝐾𝑛, as in Fig. 1. The queuing process is described
by an embedded Markov chain, where the transitions of the
substate (𝑞(𝑖), 𝑟(𝑖)) in each slot are described by the square
transition matrix T𝑛 of size (𝐵 + 1) (𝑅+ 1) (see Appendix A
of [30]), where 𝐵 is the buffer length and 𝑅 is the maximum
number of retransmissions. As explained in [13], the evolution
of the substate (𝑞(𝑖), 𝑟(𝑖)) during the whole CTI is described
by the matrix T𝐾𝑛

𝑛 . The packet arrival process and the channel
transitions are assumed independent, and hence the transitions
of the whole state 𝝍(𝑖) = (𝑐(𝑖), 𝑞(𝑖), 𝑟(𝑖)) are described by the
square matrix with size (𝑁+1)(𝐵+1)(𝑅+1) (see Eqs. 27-28
and Prop. 1 in [13])

P =

⎡
⎢⎣

𝑃0,0T0 ⋅ ⋅ ⋅ 𝑃0,𝑁T0

...
. . .

...
𝑃𝑁,0T

𝐾𝑁

𝑁 ⋅ ⋅ ⋅ 𝑃𝑁,𝑁T
𝐾𝑁

𝑁

⎤
⎥⎦ . (4)

The stationary state probability vector, denoted by 𝝅 =
[𝜋(0,0,0), 𝜋(0,0,1), ..., 𝜋(𝑁,𝐵,𝑅−1), 𝜋(𝑁,𝐵,𝑅)], where 𝜋(𝑐,𝑞,𝑟) is
the stationary probability of the state (𝑐, 𝑞, 𝑟), is classically
calculated as [14]

𝝅P = 𝝅,
∑
𝑐,𝑞,𝑟

𝜋(𝑐,𝑞,𝑟) = 1. (5)

From the obtained left eigenvector 𝝅, it is possible to
analytically derive the average delay 𝜏𝐷, the PLR 𝑃𝑃𝐿𝑅, and
the throughput Σ, by means of Equations 31-44 in [13], which
we simply summarize by 𝜏𝐷 = 𝑓𝐷 (𝝅), 𝑃𝑃𝐿𝑅 = 𝑓𝑃𝐿𝑅 (𝝅),
and Σ = 𝜆 (1− 𝑃𝑃𝐿𝑅), where 𝜆 is the packet arrival rate.
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B. Multi-User Analysis

From a theoretical point of view, an MU system
with 𝑈 users can be described by a superstate s(𝑖) =

(𝑐
(𝑖)
1 , 𝑞

(𝑖)
1 , 𝑟

(𝑖)
1 , ..., 𝑐

(𝑖)
𝑈 , 𝑞

(𝑖)
𝑈 , 𝑟

(𝑖)
𝑈 ) and by the corresponding

transition matrix P̃. This way, any scheduling policy based
on memoryless utility functions 𝜑(𝑖)

𝑗 = 𝑓𝑗(𝑐
(𝑖)
𝑗 , 𝑞

(𝑖)
𝑗 , 𝑟

(𝑖)
𝑗 ), ∀𝑗 ∈

{1, ..., 𝑈}, can be easily modeled. The superstate transitions
are described by a finite-length Markov chain that is both irre-
ducible (because there is a single communicating class [14])
and aperiodic (because there is at least one superstate with
nonzero self-transition probability [31]). As a consequence,
the stationary state probability vector 𝝅(s) exists and is unique,
and could be calculated as the left eigenvector of P̃ associated
to the unit eigenvalue, as done in (5) for SU systems. Unfor-
tunately, this approach is impractical, because the number of
superstates 𝐿𝝅(s) =

∏3
𝑔=1[(𝑁 + 1)(𝐵𝑆𝑔 + 1)(𝑅𝑆𝑔 + 1)]𝑈𝑔 ,

where 𝑈𝑔 is the number of users in the 𝑔th class, would be
too high in real systems. Thus, the computational complexity
would be exponential in the number of users 𝑈 =

∑3
𝑔=1 𝑈𝑔.

To reduce complexity, we want to consider only a unique
user per class, which is referred to as the representative
user of that class, so that the number of states is greatly
reduced. This SU-per-class approach is useful to describe the
equilibrium condition, where the probability that user 𝑗 is in
state 𝝍𝑗 = (𝑐𝑗 , 𝑞𝑗 , 𝑟𝑗) is the same for all the users in the same
class of user 𝑗, since users in the same class have equal traffic
intensity, equal channel statistics, and equal QoS requirements.

To develop our SU-like approach for MU systems, we
exploit an assumption of independence of the probabilities of
the stationary states for all the 𝑈 users, expressed by

𝜋(𝑐1,𝑞1,𝑟1,....,𝑐𝑈 ,𝑞𝑈 ,𝑟𝑈 ) = 𝜋(𝑐1,𝑞1,𝑟1)...𝜋(𝑐𝑈 ,𝑞𝑈 ,𝑟𝑈 ), (6)

where 𝜋(𝑐1,𝑞1,𝑟1,....,𝑐𝑈 ,𝑞𝑈 ,𝑟𝑈 ) is the stationary probability of the
superstate s, i.e., 𝜋(𝑐1,𝑞1,𝑟1,....,𝑐𝑈 ,𝑞𝑈 ,𝑟𝑈 ) is a generic element
of 𝝅(s), while 𝜋(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗) is the stationary probability of the
state 𝝍𝑗 = (𝑐𝑗 , 𝑞𝑗 , 𝑟𝑗), i.e., 𝜋(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗) is the corresponding
element of 𝝅𝑗 = 𝝅(𝝍𝑗). Obviously, 𝝅𝑗 exists and is unique,
and it could be theoretically obtained by marginalization of
𝝅(s) over all the users other than 𝑗. It is worth noting that the
approximation (6) is not valid for all the scheduling policies.
By comparing analytical and simulation results, we have
noted that (6) is more accurate for those scheduling policies
that do not take into account the substates (𝑞𝑗 , 𝑟𝑗), e.g.,
MR scheduling [9], and for RR-based policies. Conversely,
the approximation (6) could potentially be less accurate for
scheduling policies based on buffer occupancies, such as our
algorithm of Table II. However, the dependence among the
users’ substates {(𝑐𝑗, 𝑞𝑗 , 𝑟𝑗)} primarily arises when the buffers
have saturated. When the scheduler is efficient and there
are many users, the dependence among the users substates
is generally weak, and hence (6) leads to accurate results.
For the proposed scheduler, the accuracy of (6) is verified
in Section VI, where we compare analytical and simulation
results.

The assumption in (6) permits to focus on the evolution of
the single state 𝝍𝑗 = (𝑐𝑗 , 𝑞𝑗 , 𝑟𝑗) of the user 𝑗. Basically,
we want to derive, for the user 𝑗, a transition matrix P𝑗
that plays the same role of P in (4) for SU systems. Since

the state evolution for the representative user 𝑗 also depends
on the channel states, buffer occupancies, and retransmission
attempts of all the other users, it is clear that the desired
P𝑗 will depend on the probabilities that the other users
are in specific states. At the steady-state equilibrium, these
probabilities are the stationary probabilities for the states
of the other users. In other words, P𝑗 should incorporate
some information about the other users. This information is
represented by the dependence of P𝑗 from 𝝅𝑘, ∀𝑘 ∕= 𝑗, which
is developed in Section V. In addition, the evolution of the
state 𝝍𝑗 also depends on the scheduler decision. Indeed, when

user 𝑗 is transmitting (Tx), the state transition matrix P
(𝑇𝑥)
𝑗

is different from the matrix P
(𝑛𝑜−𝑇𝑥)
𝑗 used when the user 𝑗

is not transmitting (no-Tx). Both matrices, omitted for lack of
space, are derived in Appendix A of [30]. However, instead
of dealing with a scheduling-dependent time-varying Markov
chain, we introduce (as in [8]-[9]) the extra substate 𝑇𝑗 that
represents the Tx condition: 𝑇𝑗 = 1 when user 𝑗 is Tx, and
𝑇𝑗 = 0 when user 𝑗 is no-Tx. By this approach, we can define
an extended-state probability vector

�̃�𝑗 =
(
𝝍𝑗 , 𝑇𝑗

)
= (𝑐𝑗 , 𝑞𝑗 , 𝑟𝑗 , 𝑇𝑗) , (7)

which evolves according to a state-transition matrix P̃𝑗 (to
be determined) that depends on {𝝅𝑘, 𝑘 ∕= 𝑗}, P

(𝑇𝑥)
𝑗 , and

P
(𝑛𝑜−𝑇𝑥)
𝑗 . The state-transition matrix P̃𝑗 is derived in the

next section.
We now briefly discuss some properties of the Markov

chain obtained from (7). First, it is straightforward to show
that the Markov chain is irreducible, since there is a single
communicating class. Indeed, it is evident that, starting from
any state �̃�

∗
𝑗 = (𝑐∗𝑗 , 𝑞

∗
𝑗 , 𝑟

∗
𝑗 , 𝑇

∗
𝑗 ) (characterized by a channel

condition 𝑐∗𝑗 , a buffer occupancy 𝑞∗𝑗 , a retransmission number
𝑟∗𝑗 , and a transmission state 𝑇 ∗

𝑗 ), the physical phenomenon
induced by the memoryless scheduler does not prevent to
reach any other state �̃�

+

𝑗 = (𝑐+𝑗 , 𝑞
+
𝑗 , 𝑟

+
𝑗 , 𝑇

+
𝑗 ). Note that some

states, such as those of type (𝑐, 0, 𝑟, 𝑇 ) with 𝑟 > 0, are not
possible and hence are not considered into the Markov chain.
Second, since the Markov chain is irreducible and finite, all
the states are positive recurrent [14]. Moreover, it is easy
to verify that the Markov chain is aperiodic. Indeed, since
the transition probability from (0, 0, 0, 0) to itself is positive,
the state (0, 0, 0, 0) is aperiodic, such as the whole Markov
chain [31]. Since all the states are both aperiodic and positive
recurrent, i.e., ergodic, the steady-state distribution probability
vector �̃�𝑗 exists and is unique. Similarly to the SU case (5),
this distribution can be calculated using

�̃�𝑗P̃𝑗 = �̃�𝑗 , �̃�𝑗1 = 1, (8)

where 1 is the all-ones column vector. The stationary proba-
bility of a generic state �̃�𝑗 = (𝑐𝑗 , 𝑞𝑗 , 𝑟𝑗 , 𝑇𝑗) is expressed by
�̃�(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗 ,𝑇𝑗) = [�̃�𝑗 ]�̃�𝑗 , where 𝑘𝑗 = 2(𝐵𝑗 + 1)(𝑅𝑗 + 1)𝑐𝑗 +

2(𝑅𝑗 + 1)𝑞𝑗 + 2(𝑟𝑗 + 1) + 𝑇𝑗 + 1, due to the fact that the
variables in (7) are used from left to right to identify the
index 𝑘𝑗 . Obviously, 𝜋(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗) = �̃�(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗,0) + �̃�(𝑐𝑗 ,𝑞𝑗 ,𝑟𝑗,1).
Therefore, from �̃�𝑗 we can simply obtain 𝝅𝑗 , which permits
to analytically derive the average delay 𝜏𝐷,𝑗 , the PLR 𝑃𝑃𝐿𝑅,𝑗 ,
and the throughput Σ𝑗 , of user 𝑗, by means of 𝜏𝐷,𝑗 = 𝑓𝐷(𝝅𝑗),
𝑃𝑃𝐿𝑅,𝑗 = 𝑓𝑃𝐿𝑅(𝝅𝑗), and Σ𝑗 = 𝜆𝑗(1 − 𝑃𝑃𝐿𝑅,𝑗), where 𝜆𝑗
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is the packet rate of user 𝑗, as in the SU case [13]. As a
result, thanks to the independence assumption (6), we have
converted the MU problem into 𝑈 SU-equivalent problems,
one for each user. Actually, only three out of 𝑈 problems are
really different, since the users in the same QoS class have
the same state probability distribution 𝝅𝑗 .

V. STATE TRANSITION MATRIX AND STEADY-STATE

PROBABILITY DISTRIBUTION

In this section, we explain how to calculate the state
transition matrix P̃𝑗 for user 𝑗 used in (8) to derive the steady-
state probability distribution �̃�𝑗 for user 𝑗. The 2𝐿𝝅𝑗

× 2𝐿𝝅𝑗

state transition matrix P̃𝑗 associated to �̃�𝑗 is defined as

P̃𝑗 =

⎡
⎣

M(0,0,0)→(0,0,0) ⋅⋅⋅ M(0,0,0)→(𝑁,𝐵𝑗 ,𝑅𝑗)

...
. . .

...
M(𝑁,𝐵𝑗,𝑅𝑗)→(0,0,0) ⋅⋅⋅ M(𝑁,𝐵𝑗,𝑅𝑗)→(𝑁,𝐵𝑗,𝑅𝑗)

⎤
⎦ , (9)

M
𝝍

(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

=

[ 𝑝
(𝝍

(𝑖−1)
𝑗

,0)→(𝝍
(𝑖)
𝑗

,0)
𝑝
(𝝍

(𝑖−1)
𝑗

,0)→(𝝍
(𝑖)
𝑗

,1)

𝑝
(𝝍

(𝑖−1)
𝑗

,1)→(𝝍
(𝑖)
𝑗

,0)
𝑝
(𝝍

(𝑖−1)
𝑗

,1)→(𝝍
(𝑖)
𝑗

,1)

]
,

(10)
where we have set up the compact notation 𝑝𝐸 = Pr {𝐸} to
indicate the probability of an event 𝐸. The elements of (10)

describe the substate transitions �̃�
(𝑖−1)

𝑗 → �̃�
(𝑖)

𝑗 for Tx and
no-Tx cases. Thus, by conditional probability rules, we derive

𝑝
(𝝍

(𝑖−1)
𝑗 ,0)→(𝝍

(𝑖)
𝑗 ,0)

= [P
(𝑛𝑜−𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =0∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, (11)

𝑝
(𝝍

(𝑖−1)
𝑗 ,0)→(𝝍

(𝑖)
𝑗 ,1)

= [P
(𝑛𝑜−𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, (12)

𝑝
(𝝍

(𝑖−1)
𝑗 ,1)→(𝝍

(𝑖)
𝑗 ,0)

= [P
(𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =0∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, (13)

𝑝
(𝝍

(𝑖−1)
𝑗 ,1)→(𝝍

(𝑖)
𝑗 ,1)

= [P
(𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, (14)

where the index 𝑘
(𝑖)
𝑗 = (𝐵𝑗 + 1) (𝑅𝑗 + 1) 𝑐

(𝑖)
𝑗 +

(𝑅𝑗 + 1) 𝑞
(𝑖)
𝑗 +𝑟

(𝑖)
𝑗 +1 is compliant with the substate ordering

(𝑐
(𝑖)
𝑗 , 𝑞

(𝑖)
𝑗 , 𝑟

(𝑖)
𝑗 ). Therefore, to compute the matrix P̃𝑗 in (9),

we have to compute the transition probabilities in (11)-(14)
for each transition of 𝝍(𝑖)

𝑗 , based on the adopted scheduling
policy. Actually, we only derive the transition probabilities
with final state 𝑇

(𝑖)
𝑗 = 1 in (12) and (14), which are simpler

to obtain, and we exploit the relations 𝑝
(𝝍

(𝑖−1)
𝑗 ,0)→(𝝍

(𝑖)
𝑗 ,0)

=

[P
(𝑛𝑜−𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

− 𝑝
(𝝍

(𝑖−1)
𝑗 ,0)→(𝝍

(𝑖)
𝑗 ,1)

and

𝑝
(𝝍

(𝑖−1)
𝑗 ,1)→(𝝍

(𝑖)
𝑗 ,0)

= [P
(𝑇𝑥)
𝑗 ]

𝑘
(𝑖−1)
𝑗 ,𝑘

(𝑖)
𝑗

− 𝑝
(𝝍

(𝑖−1)
𝑗 ,1)→(𝝍

(𝑖)
𝑗 ,1)

to evaluate the transition probabilities with 𝑇
(𝑖)
𝑗 = 0 in (11)

and (13). Remembering that P(𝑇𝑥)
𝑗 and P

(𝑛𝑜−𝑇𝑥)
𝑗 are available

in Appendix A of [30], it turns out that the computation of P̃𝑗
requests the computation of 𝑝

𝑇
(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

and

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

in (12) and (14), respectively,

∀𝝍(𝑖−1)
𝑗 , ∀𝝍(𝑖)

𝑗 .

Since only three out of 𝑈 problems (8) are different,
instead of solving (8) 𝑈 times, one for each user 𝑗 = 1, ..., 𝑈 ,
we solve �̃�𝑆𝑔 P̃𝑆𝑔 = �̃�𝑆𝑔 for 𝑔 = 1, 2, 3, where �̃�𝑆𝑔 and
P̃𝑆𝑔 represent a generic couple �̃�𝑗 and P̃𝑗 for 𝑗 ∈ 𝑆𝑔.
This fact highly reduces the complexity of the evaluation of
P̃𝑆𝑔 = P̃𝑗 , 𝑗 ∈ 𝑆𝑔, because 𝑝

𝑇
(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

and 𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

in (12) and (14)

need to be evaluated only for the three representative
users. Moreover, since the proposed scheduling
policy is memoryless, 𝑝

𝑇
(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

and 𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

do not depend on

the previous state 𝝍
(𝑖−1)
𝑗 , but only on the current

state 𝝍
(𝑖)
𝑗 . This property further reduces complexity,

because many transition probabilities have the
same value; for instance, 𝑝

𝑇
(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

=

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, ∀𝝍(𝑖−1)
𝑗 .

As it will be evident in the following, the transition
probabilities (12) and (14) depend on the stationary state
probabilities of all the users. Therefore, P̃𝑆𝑔 depends on
{�̃�𝑆1 , �̃�𝑆2 , �̃�𝑆3}. To overcome this cross-dependence, we
resort to an iterative procedure. At the 𝑛th iteration, P̃𝑆𝑔 ,𝑛

is computed from the vectors {�̃�𝑆1,𝑛−1, �̃�𝑆2,𝑛−1, �̃�𝑆3,𝑛−1}
available from the previous iteration, and then �̃�𝑆𝑔,𝑛 is
updated using P̃𝑆𝑔 ,𝑛. As initialization, we select �̃�𝑆𝑔 ,0 to
have a uniform distribution, excluding the impossible states.
Summarizing, our iterative procedure consists of two steps.

Step 1: Computation of the state transition matrices {P̃𝑆𝑔,𝑛},
where P̃𝑆𝑔 ,𝑛 = 𝑓𝑆𝑔(�̃�𝑆1,𝑛−1, �̃�𝑆2,𝑛−1, �̃�𝑆3,𝑛−1) compactly
summarizes (9)-(14), (20)-(21), (28)-(35), for 𝑔 ∈ {1, 2, 3}.

Step 2: Computation of the steady-state probability distribu-
tions {�̃�𝑆𝑔,𝑛}, for 𝑔 ∈ {1, 2, 3}, by �̃�𝑆𝑔,𝑛 = 𝑓𝐿𝐸1(P̃𝑆𝑔 ,𝑛−1),
where 𝑓𝐿𝐸1(A) is the left eigenvector of A associated to the
unit eigenvalue.

A. Step 1: Computation of the State Transition Matrices

By (9)-(14), the state transition matrices
{P̃𝑆1,𝑛, P̃𝑆2,𝑛, P̃𝑆3,𝑛} depend on the transition
probabilities 𝑝

𝑇
(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗
and

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, ∀𝝍(𝑖)
𝑗 . In the following,

we briefly outline how to derive these transition probabilities
for a memoryless scheduling scheme. Successively, we
specialize the analytical derivation to obtain the results for
the proposed algorithm.

1) Outline of the Analytical Derivation in Step 1:

∙ To distinguish the Tx and no-Tx cases, we first introduce,
for each user 𝑢, the events

𝑇𝑋0𝑢 :={𝑇 (𝑖−1)
𝑢 = 0},

𝑇𝑋1𝑢 :={𝑇 (𝑖−1)
𝑢 = 1}. (15)

Then, for each set 𝑆 of users (i.e., the sets defined in
Section III), we derive the conditional probability that a
user 𝑢 belongs to the set 𝑆, conditioned on 𝑇𝑋0𝑢, and
conditioned on 𝑇𝑋1𝑢.
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∙ For each class 𝑆𝑔 , we consider the representative
user 𝑗 ∈ 𝑆𝑔 , and, for each state 𝝍

(𝑖)
𝑗 , we cal-

culate the conditional probability that 𝑗 is sched-
uled. For each class, two conditional probabilities
have to be found: 𝑝

𝑇
(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

and

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

. Any single user 𝑗 that can

be scheduled must belong to one of the sets enabled
for transmission, i.e., to one of the four sets expressed
in the Lines 03, 06, 08, and 13 of Table II. Let us
denote this set with 𝑆. All the other 𝑈 − 1 users
can be partitioned in three sets: 𝑆𝐻𝑃 , which contains
the users with transmission priority higher than user 𝑗;
𝑆𝐿𝑃 = (𝑆1 ∪ 𝑆2 ∪ 𝑆3)∖(𝑆𝐻𝑃 ∪ 𝑆), which contains
the users with equal priority with respect to 𝑗; and
𝑆𝐿𝑃 = 𝑆𝑔∖(𝑆𝐻𝑃 ∪ 𝑆), which contains the users with
lower priority.

∙ The conditional probability
𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

is evaluated as the

probability that 𝑆𝐻𝑃 = ∅ and user 𝑗 is randomly chosen
among the users in 𝑆. By the independence assumption
(6), this probability can be computed by expressions that
contain terms like

𝑈−1∑
𝑢=0

(
𝑈 − 1
𝑢

)
𝑤 (𝑢) 𝑝𝑢𝐸𝑃 𝑝

𝑈−1−𝑢
𝐿𝑃 , (16)

where 𝑝𝐸𝑃 is the probability that user 𝑢 ∈ 𝑆𝐸𝑃 , 𝑝𝐿𝑃 is
the probability that user 𝑢 ∈ 𝑆𝐿𝑃 , and 𝑤 (𝑢) = 1/(𝑢+1)
is a weight that takes into account the random choice
among the 𝑢+1 users in 𝑆. In (16), the probability 𝑝𝐻𝑃
that user 𝑢 ∈ 𝑆𝐻𝑃 does not appear, because 𝑇

(𝑖)
𝑗 = 1

implies that there are no users in 𝑆𝐻𝑃 , and hence the
multiplicative term 𝑝0𝐻𝑃 = 1 is hidden.

∙ To evaluate the conditional probability
𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖−1)
𝑗 →𝝍(𝑖)

𝑗

, we denote with

𝑢
(𝑖−1)
𝑇𝑥 ∕= 𝑗 the index of the Tx user in the (𝑖− 1)th

CTI. Few subcases have to be considered, depending
on 𝑢

(𝑖−1)
𝑇𝑥 ∈ 𝑆 or 𝑢

(𝑖−1)
𝑇𝑥 ∈ 𝑆𝐿𝑃 in the 𝑖th CTI, and

depending on the class of 𝑢
(𝑖−1)
𝑇𝑥 . The conditional

probability can be expressed as a weighted sum of few
terms similar to (16), one for each subcase.

Now we focus on our scheduling algorithm. We evaluate the
transition probabilities for RT, NRT, and BE users. For each
class, we compute the probability that no other user, even
of a different class, is scheduled instead of the representative
user 𝑗.

2) Transition Probabilities for RT Users: According to our
scheduling algorithm, an RT user is scheduled when Line 03
or Line 06 of Table II is executed. We distinguish between
these events, identified by E1 and E2, respectively.
Event E1 (Line 03 of Table II is executed). This happens when
both the conditions of Lines 01-02 are true, which leads to
𝑆 = 𝑆

(𝑅𝑇 )
𝐹𝐵𝐾 . In this case, the buffer 𝑞(𝑖)𝑗 = 𝐵𝑅𝑇 is full, and

hence 𝑗 ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵 when 𝑐

(𝑖)
𝑗 > 0 (TM𝑗 ∕= TM0) (The case

𝑐
(𝑖)
𝑗 = 0 is ignored because user 𝑗 would be surely no-Tx).

Bearing in mind the definition of 𝑆
(𝑅𝑇 )
𝐹𝐵𝐾 in Section III, we

define suitable conditions for 𝑆(𝑅𝑇 )
𝐹𝐵 and 𝑆

(𝑅𝑇 )
𝐹𝐵𝑟 . However, even

if 𝑗 ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵 , a user 𝑢 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵 , with 𝑢 ∕= 𝑗, can be scheduled

instead of user 𝑗: hence, to derive 𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖) and

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖) , we first find the probability that 𝑢 /∈
𝑆
(𝑅𝑇 )
𝐹𝐵 for any user 𝑢 ∕= 𝑗. To this aim, we define the event

that user u has a lower buffer (LB) occupancy as

𝐿𝐵𝑢 := {𝑢 /∈ 𝑆
(𝑅𝑇 )
𝐹𝐵 }. (17)

Since our scheduling policy takes ARQ into account, we have
to consider also the case 𝑢 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵 ∖𝑆(𝑅𝑇 )

𝐹𝐵𝑟 , i.e., the case when
user u cannot transmit because 𝑟𝑢 < 𝑟𝑗 . Thus, we define the
event that user 𝑢 has a lower retransmission (LR) number 𝐿𝑅𝑢
than the user 𝑗 as

𝐿𝑅𝑢 := {𝑢 ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵 ∖𝑆(𝑅𝑇 )

𝐹𝐵𝑟 , 𝑗 ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵𝑟 }. (18)

Similarly, since the scheduler takes AMC into account, we
consider 𝑢 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝑟 ∖𝑆(𝑅𝑇 )

𝐹𝐵𝐾 , where the user 𝑢 is characterized
by a rate 𝐾

(𝑖)
𝑢 lower (or equal) than 𝐾

(𝑖)
𝑗 , as expressed by

𝐿𝐾𝑢 :=
{
𝑢 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝑟 ∖𝑆(𝑅𝑇 )

𝐹𝐵𝐾 , 𝑗 ∈ 𝑆
(𝑅𝑇 )
𝐹𝐵𝐾

}
,

𝐸𝐾𝑢 :=
{
𝑢 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝐾 , 𝑗 ∈ 𝑆

(𝑅𝑇 )
𝐹𝐵𝐾

}
. (19)

As derived in Appendix B of [30], the events in (17)-(19)
allow to express 𝑝

𝑇
(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

as in (20), shown at

the top of the next page, where for simplicity we omit the
user index 𝑢 into the conditional probabilities, which are the
same for all RT users, e.g., 𝑝𝐿𝐵𝑢∣𝑇𝑋0𝑢 = 𝑝𝐿𝐵∣𝑇𝑋0. The
probabilities 𝑝𝐿𝐵∣𝑇𝑋0, 𝑝𝐿𝑅∣𝑇𝑋0, and the others, are derived
in Section V.A.5.

Let us now assess the transition probability
𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

. Since in this case user 𝑗 was

no-Tx during the (𝑖− 1)th CTI, 𝑢
(𝑖−1)
𝑇𝑥 ∕= 𝑗 was Tx (we

define 𝑢
(𝑖−1)
𝑇𝑥 = 0 when no user was Tx in the (𝑖− 1)th CTI).

By distinguishing between 𝑢
(𝑖−1)
𝑇𝑥 ∈ 𝑆𝑅𝑇 and 𝑢

(𝑖−1)
𝑇𝑥 /∈ 𝑆𝑅𝑇 ,

the probability 𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

, derived in Appendix B

of [30], can be simplified as in (21), shown at the top
of the next page, where 𝑤 = (𝑈𝑅𝑇 − 1) 𝑝𝑇𝑋1𝑅𝑇 , and
𝑝𝑇𝑋1𝑅𝑇 = Pr{𝑇 (𝑖−1)

𝑢 = 1} stands for 𝑝𝑇𝑋1𝑢 in (15) for a
generic user 𝑢 ∈ 𝑆𝑅𝑇 . This is consistent with (20), which
indeed is equivalent to (21) when 𝑈𝑅𝑇 = 1. The probabilities
in the right-hand side of (21), as well as 𝑝𝑇𝑋1𝑢 , are derived
in Section V.A.5.
Event E2 (Line 06 of Table II is executed). This happens when
the condition in Line 02 is false, so that the buffer 𝑞(𝑖)𝑗 < 𝐵𝑗

is not full. In this case, 𝑆 = 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑅𝑇 . To evaluate the

transition probabilities, we have to consider that also NRT
users could transmit, depending on their utility function 𝜙

(𝑖)
𝑢 .

Let us first derive 𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

. First of all, anal-

ogously to E1, we have to determine if a generic RT or
NRT user belongs to 𝑆

(𝑥𝑅𝑇 )
𝑀Φ , which is a set included in the

definition of 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 , and in the case of RT users, if they

belong to 𝑆
(𝑅𝑇 )
𝐹𝐵 . We therefore define the events

𝐿Φ𝐿𝐵𝑢 :={𝑢 ∈ (𝑆𝑅𝑇 ∖𝑆(𝑅𝑇 )
𝐹𝐵 )∖𝑆(𝑥𝑅𝑇 )

𝑀Φ , 𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ }, (22)

𝐿Φ𝑢 :={𝑢 ∈ (𝑆𝑁𝑅𝑇 ∖𝑆(𝑥𝑅𝑇 )
𝑀Φ ) ∪ (𝑆𝐵𝐸∖𝑆(𝐵𝐸)

𝑀Φ ),

𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ ∪ 𝑆

(𝐵𝐸)
𝑀Φ }, (23)
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𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

=

𝑈𝑅𝑇−1∑
𝑢=0

(
𝑈𝑅𝑇 − 1

𝑢

)
1

𝑢+ 1
𝑝𝑢𝐸𝐾∣𝑇𝑋0

(
𝑝𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅∣𝑇𝑋0 + 𝑝𝐿𝐾∣𝑇𝑋0

)𝑈𝑅𝑇−1−𝑢
(20)

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= (1− 𝑤) 𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

+ 𝑤

𝑈𝑅𝑇−2∑
𝑢=0

(
𝑈𝑅𝑇 − 2

𝑢

)
𝑝𝑢𝐸𝐾∣𝑇𝑋0

× (𝑝𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅∣𝑇𝑋0 + 𝑝𝐿𝐾∣𝑇𝑋0)
𝑈𝑅𝑇−2−𝑢

(
𝑝𝐿𝐵∣𝑇𝑋1 + 𝑝𝐿𝑅∣𝑇𝑋1 + 𝑝𝐿𝐾∣𝑇𝑋1

𝑢+ 1
+

𝑝𝐸𝐾∣𝑇𝑋1

𝑢+ 2

)
(21)

where (22) is related to RT users and (23) to NRT and BE users
(the events related to BE users will be used later on). There
are also other considerations that help us in identifying useful
events. If there is no user 𝑢 ∕= 𝑗 belonging to 𝑆

(𝑅𝑇 )
𝐹𝐵 ∪𝑆

(𝑥𝑅𝑇 )
𝑀Φ ,

we have 𝑆
(𝑅𝑇 )
𝐹𝐵 = ∅ and 𝑆

(𝑥𝑅𝑇 )
𝑀Φ = {𝑗}, and consequently

user 𝑗 certainly transmits. Anyway, even if some users 𝑢 ∕= 𝑗

belong to 𝑆
(𝑥𝑅𝑇 )
𝑀Φ , when none of them belong to 𝑆

(𝑥𝑅𝑇 )
𝑀Φ𝑟 , user

j certainly transmits. Thus, we also define the events:

𝐿𝑅𝐿𝐵𝑢 :={𝑢 ∈ ((𝑆𝑅𝑇 ∩ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ )∖𝑆(𝑥𝑅𝑇 )

𝑀Φ𝑟 )∖𝑆(𝑅𝑇 )
𝐹𝐵 ,

𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 }, (24)

𝐸𝑅𝐿𝐵𝑢 :={𝑢 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑅𝑇 , 𝑗 ∈ 𝑆

(𝑥𝑅𝑇 )
𝑀Φ𝑟 }, (25)

𝐿Φ𝑅𝑢 :={𝑢 ∈ ((𝑆𝑁𝑅𝑇 ∩ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ )∖𝑆(𝑥𝑅𝑇 )

𝑀Φ𝑟 )

∪ (𝑆
(𝐵𝐸)
𝑀Φ ∖𝑆(𝐵𝐸)

𝑀Φ𝑟 ), 𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∪ 𝑆

(𝐵𝐸)
𝑀Φ𝑟 }, (26)

𝐸Φ𝑅𝑢 :={𝑢 ∈ (𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑁𝑅𝑇 ) ∪ 𝑆

(𝐵𝐸)
𝑀Φ𝑟 ,

𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∪ 𝑆

(𝐵𝐸)
𝑀Φ𝑟 }, (27)

where (24)-(25) are valid for RT users, and (26)-(27) for
NRT and BE users. From Appendix C of [30], we have (28),
shown at the top of the next page, where 𝑤0 = (𝑝𝐿Φ∣𝑇𝑋0 +
𝑝𝐿Φ𝑅∣𝑇𝑋0 + 𝑝𝐸Φ𝑅∣𝑇𝑋0)

𝑈𝑁𝑅𝑇 .
We now focus on 𝑝

𝑇
(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

. In this case, we

have to distinguish among the three cases: 𝑢
(𝑖−1)
𝑇𝑥 ∈ 𝑆𝑅𝑇 ,

𝑢
(𝑖−1)
𝑇𝑥 ∈ 𝑆𝑁𝑅𝑇 , and 𝑢

(𝑖−1)
𝑇𝑥 /∈ 𝑆𝑅𝑇 ∪ 𝑆𝑁𝑅𝑇 . In Appendix C

of [30], we have derived the transmission probabilities for
user 𝑗 for all the cases, which lead to (29), shown at the top
of the next page, where 𝑤1 = 𝑈𝑁𝑅𝑇 𝑝𝑇𝑋1𝑁𝑅𝑇 ((𝑝𝐿Φ∣𝑇𝑋1 +
𝑝𝐿Φ𝑅∣𝑇𝑋1 + 𝑝𝐸Φ𝑅∣𝑇𝑋1)𝑤

−1
0 − 1) − 𝑤2𝑤

−1
0 + 1 and 𝑤2 =

(𝑈𝑅𝑇 − 1)𝑝𝑇𝑋1𝑅𝑇𝑤0.
3) Transition Probabilities for NRT Users: This case cor-

responds to Line 08 of Table II, i.e., an NRT user transmits.
We consider again the sets 𝑆(𝑅𝑇 )

𝐹𝐵 , 𝑆(𝑅𝑇 )
𝐹𝐵𝑟 , 𝑆(𝑅𝑇 )

𝐹𝐵𝐾 , 𝑆(𝑥𝑅𝑇 )
𝑀Φ and

𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 defined in Section III, and the events defined in (22)-

(27). When 𝑗 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑁𝑅𝑇 , user 𝑗 transmits only if

𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩𝑆𝑅𝑇 = ∅. RT users are no-Tx if 𝐿Φ𝐿𝐵𝑢 or 𝐿𝑅𝐿𝐵𝑢

is verified. For the other NRT users, we have to consider 𝐿Φ𝑢
and 𝐿Φ𝑅𝑢 when 𝑢 /∈ 𝑆

(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑁𝑅𝑇 , and 𝐸Φ𝑅𝑢 when

𝑢 ∈ 𝑆
(𝑥𝑅𝑇 )
𝑀Φ𝑟 ∩ 𝑆𝑁𝑅𝑇 . From the Appendix D of [30], we

obtain (30) and (31), shown in the next page, where 𝑤3 =
(𝑝𝐿Φ𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋0)

𝑈𝑅𝑇 , 𝑤4 = 1 − 𝑈𝑅𝑇 𝑝𝑇𝑋1𝑅𝑇 −
(𝑈𝑁𝑅𝑇 − 1)𝑝𝑇𝑋1𝑁𝑅𝑇 , 𝑤5 = 𝑈𝑅𝑇 𝑝𝑇𝑋1𝑅𝑇 (𝑝𝐿Φ𝐿𝐵∣𝑇𝑋0 +
𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋0)

𝑈𝑅𝑇−1(𝑝𝐿Φ𝐿𝐵∣𝑇𝑋1 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋1), and 𝑤6 =
(𝑈𝑁𝑅𝑇 − 1)𝑝𝑇𝑋1𝑁𝑅𝑇 (𝑝𝐿Φ𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋0)

𝑈𝑅𝑇 .

4) Transition Probabilities for BE Users: This is the last
case of our algorithm, when Line 13 of Table II is executed.
We exploit the definitions of 𝑆

(𝐵𝐸)
𝑀Φ𝑟 and 𝑆

(𝐵𝐸)
𝑀Φ through

(23), (26), and (27). We remark that BE users are sched-
uled for transmission only if all RT and NRT users cannot
transmit, due to bad channels or empty buffers, expressed
by the event 𝐶0𝑄0 = {(𝑐(𝑖)𝑢 = 0 ∨ 𝑞

(𝑖)
𝑢 = 0), ∀𝑢 ∈

𝑆𝑅𝑇 ∪ 𝑆𝑁𝑅𝑇 }. Since 𝐶0𝑄0 depends on the class of 𝑢(𝑖−1)
𝑇𝑥 ,

we introduce the probabilities 𝑝𝐵𝐸1 = 𝑝
𝐶0𝑄0∣𝑢(𝑖−1)

𝑇𝑥 ∈𝑆𝑅𝑇
,

𝑝𝐵𝐸2 = 𝑝
𝐶0𝑄0∣𝑢(𝑖−1)

𝑇𝑥 ∈𝑆𝑁𝑅𝑇
and 𝑝𝐵𝐸3 = 𝑝

𝐶0𝑄0∣𝑢(𝑖−1)
𝑇𝑥 ∈𝑆𝐵𝐸

.
From Appendix E of [30], we obtain (32) and (33),
shown in the next page, where 𝑤7 = 𝑈𝑅𝑇 𝑝𝑇𝑋1𝑅𝑇 𝑝𝐵𝐸1 +
𝑈𝑁𝑅𝑇 𝑝𝑇𝑋1𝑁𝑅𝑇 𝑝𝐵𝐸2 +(1−𝑈𝑅𝑇𝑝𝑇𝑋1𝑅𝑇 −𝑈𝑁𝑅𝑇 𝑝𝑇𝑋1𝑁𝑅𝑇 −
(𝑈𝐵𝐸 − 1)𝑝𝑇𝑋1𝐵𝐸 )𝑝𝐵𝐸3 and 𝑤8 = (𝑈𝐵𝐸 − 1)𝑝𝑇𝑋1𝐵𝐸𝑝𝐵𝐸3 .
In (33), we have also included the case 𝑢

(𝑖−1)
𝑇𝑥 = 0.

5) Computation of the Probabilities of Conditional Events:
The analytical expressions of the transition probabilities in
(20)-(21) and (28)-(33) depend on conditional probabilities,
such as 𝑝𝐿𝑅∣𝑇𝑋0 and 𝑝𝐿Φ𝐿𝐵∣𝑇𝑋1, which turn out to depend
on the stationary state probabilities conditioned on the events
𝑇𝑋0𝑢 and 𝑇𝑋1𝑢. Consequently, instead of the stationary
state probability vectors {�̃�𝑆𝑔 ,𝑛−1}, 𝑔 = {1, 2, 3}, available
at iteration 𝑛 − 1, we have to consider the two subvectors
of �̃�𝑆𝑔,𝑛−1 that correspond to the stationary state probability
conditioned on 𝑇 (𝑖−1) = 0 and on 𝑇 (𝑖−1) = 1, denoted with
�̃�

(𝑛𝑜−𝑇𝑥)
𝑆𝑔 ,𝑛−1 and �̃�(𝑇𝑥)

𝑆𝑔,𝑛−1, respectively. By standard conditional
probability rules, for 𝑢 ∈ 𝑆𝑔, we obtain

�̃�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1 =

�̃�(𝑐,𝑞,𝑟,0),𝑆𝑔,𝑛−1

𝑝𝑇𝑋0𝑢

,

�̃�
(𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1 =

�̃�(𝑐,𝑞,𝑟,1),𝑆𝑔,𝑛−1

𝑝𝑇𝑋1𝑢

, (34)

where �̃�(𝑐,𝑞,𝑟,𝑇 (𝑖−1)),𝑆𝑔,𝑛−1, �̃�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1, and �̃�

(𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1

are the elements of �̃�𝑆𝑔,𝑛−1, �̃�
(𝑛𝑜−𝑇𝑥)
𝑆𝑔,𝑛−1 , and �̃�(𝑇𝑥)

𝑆𝑔 ,𝑛−1, re-
spectively, corresponding to 𝑐𝑢 = 𝑐, 𝑞𝑢 = 𝑞 and 𝑟𝑢 = 𝑟.
Note that 𝑝𝑇𝑋1𝑢 =

∑𝑁
𝑐=0

∑𝐵𝑢

𝑞=0

∑𝑅𝑢

𝑟=0 �̃�(𝑐,𝑞,𝑟,1),𝑆𝑔,𝑛−1, while
𝑝𝑇𝑋0𝑢 = 1 − 𝑝𝑇𝑋1𝑢 . In addition, the transition probabilities
are conditioned on the transmission at the (𝑖−1)th CTI, but are
calculated at the 𝑖th CTI. Consequently, we include the time
evolution from 𝑖− 1 to 𝑖 by multiplying the conditional state
probability vectors by the pre-computed matrices P

(𝑛𝑜−𝑇𝑥)
𝑆𝑔 ,𝑛−1

and P
(𝑇𝑥)
𝑆𝑔 ,𝑛−1, respectively, as expressed by

�̂�
(𝑛𝑜−𝑇𝑥)
𝑆𝑔,𝑛−1 =�̃�

(𝑛𝑜−𝑇𝑥)
𝑆𝑔,𝑛−1 P

(𝑛𝑜−𝑇𝑥)
𝑆𝑔

,
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𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑤0

𝑈𝑅𝑇−1∑
𝑢=0

(
𝑈𝑅𝑇 − 1

𝑢

)
1

𝑢+ 1
𝑝𝑢𝐸𝑅𝐿𝐵∣𝑇𝑋0

(
𝑝𝐿Φ𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋0

)𝑈𝑅𝑇−1−𝑢
(28)

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑤1𝑝𝑇 (𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

+ 𝑤2

𝑈𝑅𝑇−2∑
𝑢=0

(
𝑈𝑅𝑇 − 2

𝑢

)
𝑝𝑢𝐸𝑅𝐿𝐵∣𝑇𝑋0

× (
𝑝𝐿Φ𝐿𝐵∣𝑇𝑋0 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋0

)𝑈𝑅𝑇−2−𝑢
(
𝑝𝐿Φ𝐿𝐵∣𝑇𝑋1 + 𝑝𝐿𝑅𝐿𝐵∣𝑇𝑋1

𝑢+ 1
+

𝑝𝐸𝑅𝐿𝐵∣𝑇𝑋1

𝑢+ 2

)
(29)

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑤3

𝑈𝑁𝑅𝑇−1∑
𝑢=0

(
𝑈𝑁𝑅𝑇 − 1

𝑢

)
1

𝑢+ 1
𝑝𝑢𝐸Φ𝑅∣𝑇𝑋0

(
𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿Φ𝑅∣𝑇𝑋0

)𝑈𝑁𝑅𝑇−1−𝑢
(30)

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑤4𝑝𝑇 (𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

+𝑤5

𝑈𝑁𝑅𝑇−1∑
𝑢=0

(
𝑈𝑁𝑅𝑇 − 1

𝑢

)
𝑝𝑢𝐸Φ𝑅∣𝑇𝑋0(𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿Φ𝑅∣𝑇𝑋0)

𝑈𝑁𝑅𝑇−1−𝑢

𝑢+ 1

+ 𝑤6

𝑈𝑁𝑅𝑇−2∑
𝑢=0

(
𝑈𝑁𝑅𝑇 − 2

𝑢

)
𝑝𝑢𝐸Φ𝑅∣𝑇𝑋0(𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿Φ𝑅∣𝑇𝑋0)

𝑈𝑁𝑅𝑇−2−𝑢
(
𝑝𝐿Φ∣𝑇𝑋1 + 𝑝𝐿Φ𝑅∣𝑇𝑋1

𝑢+ 1
+

𝑝𝐸Φ𝑅∣𝑇𝑋1

𝑢+ 2

)
(31)

𝑝
𝑇

(𝑖−1)
𝑗 =1→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑝𝐵𝐸3

𝑈𝐵𝐸−1∑
𝑢=0

(
𝑈𝐵𝐸 − 1

𝑢

)
1

𝑢+ 1
𝑝𝑢𝐸Φ𝑅∣𝑇𝑋0

(
𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿Φ𝑅∣𝑇𝑋0

)𝑈𝐵𝐸−1−𝑢
(32)

𝑝
𝑇

(𝑖−1)
𝑗 =0→𝑇 (𝑖)

𝑗 =1∣𝝍(𝑖)
𝑗

= 𝑤7

𝑈𝐵𝐸−1∑
𝑢=0

(
𝑈𝐵𝐸 − 1

𝑢

)
1

𝑢+ 1
𝑝𝑢𝐸Φ𝑅∣𝑇𝑋0

(
𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿Φ𝑅∣𝑇𝑋0

)𝑈𝐵𝐸−1−𝑢

+ 𝑤8

𝑈𝐵𝐸−2∑
𝑢=0

(
𝑈𝐵𝐸 − 2

𝑢

)
𝑝𝑢𝐸𝑅∣𝑇𝑋0(𝑝𝐿Φ∣𝑇𝑋0 + 𝑝𝐿𝑅∣𝑇𝑋0)

𝑈𝐵𝐸−2−𝑢
(
𝑝𝐿Φ∣𝑇𝑋1 + 𝑝𝐿𝑅∣𝑇𝑋1

𝑢+ 1
+

𝑝𝐸𝑅∣𝑇𝑋1

𝑢+ 2

)
(33)

�̂�
(𝑇𝑥)
𝑆𝑔,𝑛−1 =�̃�

(𝑇𝑥)
𝑆𝑔 ,𝑛−1P

(𝑇𝑥)
𝑆𝑔

. (35)

From (35), we derive the probabilities used in (20)-(33), for Tx
and no-Tx users. These probabilities correspond to the sum of
the elements of subvectors of �̂�(𝑇𝑥)

𝑆𝑔 ,𝑛−1 or �̂�(𝑛𝑜−𝑇𝑥)
𝑆𝑔 ,𝑛−1 , depend-

ing on the conditioning on 𝑇𝑋1𝑢 or 𝑇𝑋0𝑢, respectively, for
𝑢 ∈ 𝑆𝑔 . By exploiting Appendix F of [30], we derive

𝑝𝐿𝑅𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=1

�̃�∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝐵𝑢,𝑟),𝑆1,𝑛−1, (36)

𝑝𝐿𝐵𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

𝐵𝑢−1∑
𝑞=0

𝑅𝑢∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1

+

𝑅𝑢∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(0,𝐵𝑢,𝑟),𝑆𝑔,𝑛−1, (37)

𝑝𝐿𝐾𝑢∣𝑇𝑋0𝑢 =

𝑐𝑗−1∑
𝑐=1

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝐵𝑢,𝑟𝑗𝑅𝑢/𝑅𝑗),𝑆1,𝑛−1, (38)

𝑝𝐸𝐾𝑢∣𝑇𝑋0𝑢 =�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐𝑗 ,𝐵𝑢,𝑟𝑗𝑅𝑢/𝑅𝑗),𝑆1,𝑛−1, (39)

𝑝𝐿Φ𝐿𝐵𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

�̃�∑
𝑞=0

𝑅𝑢∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1, (40)

𝑝𝐿Φ𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

⌈𝜙𝑗𝐵𝑗/𝐾𝑐⌉−1∑
𝑞=0

𝑅𝑢∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔 ,𝑛−1, (41)

𝑝𝐿𝑅𝐿𝐵𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

�̃�∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝜙𝑗𝐵𝑗/𝐾𝑐,𝑟),𝑆1,𝑛−1, (42)

𝑝𝐿Φ𝑅𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

�̃�∑
𝑟=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝜙𝑗𝐵𝑗/𝐾𝑐,𝑟),𝑆𝑔,𝑛−1, (43)

𝑝𝐸𝑅𝐿𝐵𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

𝜂𝑢,𝑗,𝑐�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,

𝜙𝑗𝐵𝑗
𝐾𝑐

,
𝑟𝑗𝑅𝑢

𝑅𝑗
),𝑆1,𝑛−1

, (44)

𝑝𝐸Φ𝑅𝑢∣𝑇𝑋0𝑢 =

𝑁∑
𝑐=0

�̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝜙𝑗𝐵𝑗/𝐾𝑐,𝑟𝑗𝑅𝑢/𝑅𝑗),𝑆𝑔 ,𝑛−1, (45)
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where, for a user 𝑢 ∈ 𝑆𝑔, �̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1 is the element of

�̂�
(𝑛𝑜−𝑇𝑥)
𝑆𝑔,𝑛−1 that corresponds to 𝑐𝑢 = 𝑐, 𝑞𝑢 = 𝑞 and 𝑟𝑢 = 𝑟, as

expressed by �̂�
(𝑛𝑜−𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1 = [�̂�

(𝑛𝑜−𝑇𝑥)
𝑆𝑔,𝑛−1 ]

𝑘
(𝑖)
𝑢

, 𝑘(𝑖)𝑢 = (𝐵𝑢 +

1)(𝑅𝑢+1)𝑐
(𝑖)
𝑢 +(𝑅𝑢+1)𝑞

(𝑖)
𝑢 + 𝑟

(𝑖)
𝑢 +1, �̃� = ⌈𝑟𝑗𝑅𝑢/𝑅𝑗⌉−1,

and �̃� = min {⌈𝜙𝑗𝐵𝑗/𝐾𝑐⌉ − 1, 𝐵𝑢 − 1}. In (44), 𝜂𝑢,𝑗,𝑐 =
1 when 𝜙𝑗𝐵𝑗/𝐾𝑐 < 𝐵𝑢, and 𝜂𝑢,𝑗,𝑐 = 0 for 𝜙𝑗𝐵𝑗/𝐾𝑐 =
𝐵𝑢. Please observe that, when 𝑟𝑗𝑅𝑢/𝑅𝑗 is non-integer, the
probabilities (38), (39), (44), and (45) are zero. The other
probabilities, i.e., those conditioned on 𝑇𝑋1𝑢, are the same
of (36)-(45), but with �̂�

(𝑇𝑥)
(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1 instead of �̂�(𝑛𝑜−𝑇𝑥)

(𝑐,𝑞,𝑟),𝑆𝑔,𝑛−1.

B. Step 2: Computation of the Probability Distribution of the
Stationary State

The state distribution vectors {�̃�𝑆𝑔 ,𝑛} , 𝑔 = {1, 2, 3} are
derived from the knowledge of P̃𝑆𝑔 ,𝑛 as follows

�̃�𝑆𝑔,𝑛P̃𝑆𝑔 ,𝑛 = �̃�𝑆𝑔 ,𝑛, �̃�𝑆𝑔 ,𝑛1 = 1. (46)

Specifically, �̃�𝑆𝑔 ,𝑛 is the unique left eigenvector of P̃𝑆𝑔 ,𝑛

that corresponds to the unit eigenvalue, which is also
maximum. Hence, the power method [32] can be used
to obtain �̃�𝑆𝑔,𝑛. The iterative procedure is stopped when∥∥1− �̃�𝑆𝑔,𝑛 ⊘ �̃�𝑆𝑔 ,𝑛−1

∥∥
∞ ≤ 𝜀, where ⊘ denotes element-

wise division and 𝜀 is a suitable threshold, or when a fixed
number 𝑁𝐼𝑇 of iterations have elapsed. The final vector �̃�𝑆𝑔

is then used to calculate the average delay 𝜏𝐷,𝑗 , the PLR, and
the throughput Σ𝑗 , as in [13], for the user 𝑗 ∈ 𝑆𝑔 . In addition,
from �̃�𝑆𝑔 we can also extract the probability distribution of the
substate (𝑐, 𝑇 ), used in [8]-[9] to obtain the delay probability
distribution.

1) Convergence: The convergence of the whole iterative
procedure has been investigated and verified by simulations.
To speed up convergence, we split the iterative procedure into
two subprocedures: the first considers RT and NRT users,
while the second, which concerns BE users, exploits the results
of the first one. Indeed, the performance of RT and NRT users
is independent from the parameters of BE users.

C. Remarks

1) Computational Complexity: In order to assess the com-
putational complexity of the analytical procedure, we estimate
the number of multiplications required in Step 1 and Step 2.
Actually, the total complexity is dominated by the class with
the largest product 𝐿𝑔 = (𝑁 + 1)

(
𝐵𝑆𝑔 + 1

) (
𝑅𝑆𝑔 + 1

)
. For

each iteration, the number of multiplications in Step 1 is
roughly estimated as 𝑁𝑀1 = 2𝜅𝑇𝑈𝐿𝑔, where 𝜅𝑇 represents
the number of terms (similar to (16)) that have to be computed.
For our scheduling algorithm, 𝜅𝑇 ≤ 14. On the other hand,
the number of multiplications in Step 2 is approximately
𝑁𝑀2 = 𝑁𝑃𝑀𝜅𝑆𝐿𝑔 per iteration, where 𝑁𝑃𝑀 is the number
of iterations of the power method, and 𝜅𝑆 is the sparsity index
of P̃𝑆𝑔 ,𝑛, herein defined as the average number of nonzero
elements per row. In most cases, 𝜅𝑆 is very low with respect
to 𝐿𝑔 . Therefore, the total number of multiplications can be
estimated as

𝑁𝑀 ≈ (𝑁𝑀1 +𝑁𝑀2)𝑁𝐼𝑇 ≈ (2𝜅𝑇𝑈 +𝑁𝑃𝑀𝜅𝑆)𝐿𝑔𝑁𝐼𝑇 ,

where 𝑁𝐼𝑇 is the number of iterations of our two-step iterative
procedure. Hence, the complexity is linear with the number
of users 𝑈 . Anyway, when 𝑈 is very large, accurate low-
complexity approximations are possible. For instance, we
can approximate (16) by exploiting the De Moivre-Laplace
Theorem, which leads to
𝑈−1∑
𝑢=0

(
𝑈 − 1
𝑢

)
1

𝑢+ 1
𝑥𝑢𝑦𝑈−𝑢−1

≈ 1√
2𝜋𝑈3𝑥2𝑦 (1− 𝑦)

∫ 𝑈

1

(
𝑥

1− 𝑦

)𝑧
𝑒−

(𝑧−𝑈(1−𝑦))2

2𝑈𝑦(1−𝑦) 𝑑𝑧,

which is accurate when 𝑥 + 𝑦 is close to one. Since this
integral admits a closed-form solution, significant complexity
reduction can be achieved. Alternatively, when 𝑥 ≪ 1, only
the first terms are non-negligible, and therefore the summation
can be safely truncated.

2) Single-Class Case: RT Users Only: On the basis of
the previous results, it is interesting to examine the case of
a single service class, e.g., the RT users, since this class is
more demanding in terms of QoS performance. Clearly, only
one matrix P̃𝑆1,𝑛 and one vector �̃�𝑆1,𝑛 must be updated
at each iteration, and only RT users must be considered
in Step 1 and Step 2. The transition probabilities are still
expressed by (28) and (29), with the additional constraint
𝑈𝑁𝑅𝑇 = 0. The obtained results correspond to those of [33],
which actually neglects the very low probability Pr{𝑢(𝑖−1)

𝑇𝑥 =
0} = 1− (𝑈𝑅𝑇 − 1)𝑝𝑇𝑋1𝑅𝑇 .

3) Applicability to Other Scheduling Policies: We remark
that, by the same approach, we can model other memoryless
scheduling policies, by computing equations similar to (17)-
(46). Indeed, although tedious, the computation of the state
probability is straightforward, provided that suitable events
like (17)-(19), (22)-(27) are defined. Therefore, our approach
can also be used for the QoS analysis of other scheduling algo-
rithms. In general, we expect that the accuracy level is higher
for those algorithms that try to minimize the interdependencies
of the user states, in such a way that the approximation (6)
works well.

VI. SIMULATION RESULTS

We assume that the total bandwidth of each user link is
𝑊 = 1.08 MHz, with packet length 𝑁𝑃 = 1080 bits,
and CTI of duration 𝑇𝑓 = 2 ms. We use the channel
model of [13] (Rayleigh fading with average SNR = 15
dB and Doppler frequency 𝑓𝑑 = 10Hz), assuming six states
(𝑁 = 5) and choosing the TMs to guarantee a packet-
error rate PER = 0.05 for each TM, as in [13]. We con-
sider Poisson arrival processes, with packet arrival probability
𝑝
𝑎∣𝑐(𝑖)𝑗

=
(
𝜆𝑆𝑔 𝑙𝑛

)𝑎
𝑒−𝜆𝑆𝑔 𝑙𝑛/𝑎!, 𝑎 > 0, 𝑗 ∈ 𝑆𝑔, 𝑔 = {1, 2, 3},

where 𝜆𝑆𝑔 is the mean arrival rate, and 𝑎 is the number of
packets arriving in the 𝑖th CTI to a certain user 𝑗 ∈ 𝑆𝑔
during a single slot of duration 𝑙𝑛 = 𝑇𝑓/𝐾𝑐(𝑖)𝑗

. To quan-

tify the throughput, we introduce the ideal total rate (ITR),
defined as 𝐾𝑀𝐴𝑋 (𝑈) =

∑𝑁
𝑛=0 𝑝{𝑛𝑀𝐴𝑋𝑈=𝑛}𝐾𝑛, where

𝑛𝑀𝐴𝑋𝑈 = argmax
𝑢∈𝑆𝑅𝑇∪𝑆𝑁𝑅𝑇∪𝑆𝐵𝐸

{𝑐𝑢}, and 𝑝{𝑛𝑀𝐴𝑋𝑈=𝑛} rep-

resents the probability of the user with the best instantaneous
SNR to be in the TM𝑛 state. The value of 𝑝{𝑛𝑀𝐴𝑋𝑈=𝑛} is
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Fig. 3. Buffer occupancy and retransmission distributions for 𝑈𝑅𝑇 = 20,
𝑈𝑁𝑅𝑇 = 10 and 𝑈𝐵𝐸 = 20.

obtained as the stationary state probability associated with the
best-user-channel matrix P

(𝑀𝐴𝑋)
𝐶 (defined similarly to P𝐶 ,

and derived in Appendix G of [30]). Basically, the ITR is the
maximum aggregate rate, achieved by scheduling the user with
the maximum rate in each CTI. In the SU case, the ITR is the
average rate for infinite buffer length and no delay constraints,
expressed by 𝐾𝑀𝐴𝑋 (1) =

∑𝑁
𝑛=0 𝑝{𝑐1=𝑛}𝐾𝑛 ≈ 4.9 packets

per CTI (2.65 Mb/sec), while in the MU case the ITR increases
thanks to the MU diversity, up to 𝐾𝑀𝐴𝑋 (∞) = 𝐾𝑁 = 9
packets per CTI (4.87 Mb/sec). The arrival rate 𝜆𝑗 = 𝜆𝑆𝑔 is
chosen as 𝜆𝑆𝑔 = 𝛼𝑔𝐾𝑀𝐴𝑋 (𝑈) / (𝑈𝑔𝑇𝑓 ), where 𝛼𝑔 ∈ [0, 1)
quantifies the traffic intensity for each service class 𝑔 with
respect to the ITR. Clearly, by defining 𝐴 =

∑3
𝑔=1 𝛼𝑔 the

sum of the three intensities, 𝐴 = 1 represents an unreachable
limit for any scheduling policy in a practical system with
finite buffer length. The chosen buffer lengths are 𝐵𝑅𝑇 = 10,
𝐵𝑁𝑅𝑇 = 30, and 𝐵𝐵𝐸 = 25. Although the buffer lengths of
NRT and BE users are quite small with respect to practical
applications, the probability of higher buffer occupancies is
rather small, at least for practical traffic loads such as those
herein considered. Hence, short buffers do not affect the model
accuracy, and reduce complexity by avoiding unmanageable
matrices P̃𝑆𝑔 . The maximum numbers of retransmissions are
𝑅𝑅𝑇 = 1, 𝑅𝑁𝑅𝑇 = 2, and 𝑅𝐵𝐸 = 1. As a consequence, the
square matrices P̃𝑆1 , P̃𝑆2 , and P̃𝑆3 have sizes 264, 1116, and
624, respectively. In the iterative procedure, we fix 𝑁𝐼𝑇 = 100
and 𝜀 = 10−3.

Fig. 3 illustrates the probability distribution of the buffer
occupancy 𝑞

(𝑖)
𝑗 and of the number of retransmissions 𝑟(𝑖)𝑗 , for

RT and NRT users, when 𝑈𝑅𝑇 = 20, 𝑈𝑁𝑅𝑇 = 10, and
𝑈𝐵𝐸 = 20. The traffic loads 𝛼1 = 0.167, 𝛼2 = 0.222,
and 𝛼3 = 0.167, corresponding to 𝐴 = 0.55, cause a very
low transmission probability for BE users, making their QoS
performance not significant. Indeed, the probability that no
RT (and NRT) users have a packet to transmit is negligible,
such that BE users are not able to transmit their packets and
their buffers saturate. Moreover, Fig. 3 shows a very good
agreement between simulated and analytical probabilities for
both buffer occupancies and retransmissions. Notably, both RT
and NRT users have very small probabilities of high buffer
occupancies. For RT users, this reduces the average delay,
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Fig. 4. Correlation coefficients among buffer occupancies of users of the
classes 𝑖 and 𝑗.

which is proportional to the average buffer occupancy, while
for NRT users, this limits the PLR due to the low probability
of exceeding 𝑅𝑁𝑅𝑇 retransmissions. Besides, Fig. 3 justifies
the choice of a short buffer also for NRT users.

In Fig. 4, we have investigated the validity of the in-
dependence assumption (6) with ad hoc simulations on the
probability distribution of buffer occupancy, which is critical
in the model derivation and in the QoS performance assess-
ment. Our aim is to identify the cases when the independence
approximation is not accurate. To this end, we monitor when
the buffer occupancies of different users are correlated. We
define the average crosscorrelation coefficient between the
buffer occupancies of different users, as

𝜌𝑔𝑔 =
∑
𝑖∈𝑆𝑔

∑
𝑗∈𝑆𝑔 ,𝑗 ∕=𝑖

𝐸 {𝑞𝑖𝑞𝑗} − 𝜇2
𝑔

𝜎2
𝑔𝑈𝑔(𝑈𝑔 − 1)

,

𝜌𝑔𝑘 =
∑
𝑖∈𝑆𝑔

∑
𝑗∈𝑆𝑘,𝑘 ∕=𝑔

𝐸 {(𝑞𝑖 − 𝜇𝑔) (𝑞𝑗 − 𝜇𝑘)}
𝜎𝑔𝜎𝑘𝑈𝑔𝑈𝑘

, (47)

where 𝜇𝑔 = 𝐸 {𝑞𝑖}, 𝜎𝑔 =
√
𝐸 {𝑞2𝑖 } − 𝜇2

𝑔, 𝑖 ∈ 𝑆𝑔 . Fig. 4
displays the average crosscorrelation coefficient 𝜌𝑔𝑘 as a
function of the aggregate traffic load 𝐴 (𝛼𝑔 is assumed equal
for all the three classes). It is clear that ∣𝜌33∣ is significantly
greater than 0.1, while in the other cases ∣𝜌𝑔𝑘∣ is always
lower than 0.1. Therefore, the buffer occupancies of BE users
are correlated and hence dependent: this happens because,
for high traffic loads, the buffers of BE users saturate and
hence their occupancies are correlated towards the unit value.
On the contrary, in the other cases, the buffer occupancies
are uncorrelated. Although uncorrelatedness does not imply
independence, the good accuracy obtained for RT and NRT
users in the other simulations suggest that the approximation
error due to the independence assumption (6) is negligible,
even for high traffic loads.

Fig. 5 exhibits the average delay and the PLR for RT and
NRT users as a function of 𝑈𝑅𝑇 when 𝑈𝑁𝑅𝑇 = 10 and
𝑈𝐵𝐸 = 20. The delay of RT users, which increases linearly
with 𝑈𝑅𝑇 , is much lower than for NRT users and than the
maximum delay 𝛿 = 200 ms defined for WiMAX [18]. The
PLR of BE users is not significant, being close to one. The
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Fig. 6. Average packet delay for 𝑈𝑅𝑇 = 20 and 𝑈𝐵𝐸 = 20.

model accuracy is confirmed even when the PLR of NRT users
is very low. Anyway, for both RT and NRT users, the PLR
is lower than the maximum PLR defined for WiMAX (0.01
for RT and 0.001 for NRT) [18]. For these moderately high
traffic loads, the accuracy is very good. However, for very high
traffic loads, when many buffers are close to the saturation,
the independence assumption is less accurate. Nevertheless,
higher accuracies are generally obtained for higher numbers
of users. Noteworthy, the complexity of the proposed analyt-
ical framework does not increase with the number of users,
when De Moivre-Laplace calculations are involved. Therefore,
differently from [8], [9] and [25], this work is best suited to
analytically handle many users.

In Figs. 3-5, due to the high traffic loads for RT and NRT
users, the probability that a BE user is scheduled is very low,
so that the QoS parameters for BE users are not significant.
In Fig. 6, we focus on BE users, and hence we choose 𝛼1 =
𝛼2 = 0.05 and 𝛼3 = 0.4, assuming 𝑈𝑅𝑇 = 20, 𝑈𝐵𝐸 = 20,
and variable 𝑈𝑁𝑅𝑇 . This way, BE users are scheduled quite
often. Fig. 6 plots (in a logarithmic scale) the average packet
delay for RT, NRT, and BE users. Clearly, in Fig. 6 the average
delay for BE users is much higher than for RT and NRT users,
and is quite sensitive to 𝑈𝑁𝑅𝑇 . Fig. 6 also demonstrates a

100 150 200 250 300
30

40

50

60

70

80

Deadline (ms)

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (m
s)

 

 

LWG, A = 0.75
Proposed, Simulation, A = 0.75
Proposed, Theoretical, A = 0.75
LWG, A = 0.5
Proposed, Simulation, A = 0.5
Proposed, Theoretical, A = 0.5

Fig. 7. Average packet delay for different values of the time deadline in
LWG [25], for 𝑈𝑅𝑇 = 20.
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slight worse model accuracy with respect to the previous cases.
Anyway, the presented model is still useful to predict the QoS
performance of heterogeneous users.

Fig. 7 and Fig. 8 compare our proposed scheduler with [25],
denoted with LWG. To simplify the comparison, we focus
on the single-class case, where all users are RT. Fig. 7 and
Fig. 8 plot the average delay and the throughput experienced
by 𝑈 = 40 RT users, for 𝐴 = 0.75 and 𝐴 = 0.5, as a
function of the time deadline, i.e., the temporal parameter of
[25] discussed in Section III. We observe that a longer deadline
reduces the average delay of [25], which however exceeds the
average delay obtained with our algorithm, even for a deadline
greater than the maximum tolerable delay for voice systems
(𝛿 = 200 ms). Moreover, our algorithm yields an increased
throughput for 𝐴 = 0.75, because we favor users with full
buffer and therefore we reduce the packet losses.

Finally, we compare our proposed scheduler with the LCQ
algorithm of [21]. Similarly to the previous case, we focus
on a single class with RT users. The LCQ scheduler assigns
transmission to the user with higher buffer occupancy, among
the users whose channel state is not OFF, and is delay-
optimal in scenarios with two TMs (ON/OFF) [21]. In order
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Fig. 10. Normalized throughput comparison with LCQ.

to use the LCQ algorithm in our multiple-TM scenario, we
associate the OFF mode with the TM0, and the ON mode
to the TM defined by the actual channel state. Therefore,
we allow the LCQ algorithm to transmit multiple packets
for each CTI. Fig. 9 and Fig. 10 plot the average delay and
the throughput, respectively, for 𝐴 = 0.75, 𝐴 = 0.67, and
𝐴 = 0.5, as a function of the number of users. Fig. 9 shows
that the proposed scheduling policy produces a lower average
packet delay with respect to LCQ, for all values of the traffic
load 𝐴. Indeed, differently from LCQ, the proposed scheduler
takes its decision depending on the value of the channel rate
𝐾𝑐. In practice, using our scheduler policy, usually more
packets are transmitted, and this helps in reducing the buffer
queues. As a result, the average delay is reduced too. Fig. 10
shows that the two schedulers produce similar throughput
performances: LCQ achieves a slightly higher throughput for
low traffic loads, while the proposed scheduling policy has
better performance for high traffic loads. Actually, by changing
the association of the ON/OFF states with our TMs, we may
reduce also the average packet delay of LCQ, with a penalty
in terms of throughput.

VII. CONCLUSIONS

We have presented a useful framework to characterize
the theoretical QoS performance of memoryless scheduling
policies for multi-user, multi-class wireless systems that com-
bine AMC and ARQ in a cross-layer fashion. The proposed
framework is able to accurately assess the PLR, the average
delay, and the throughput, for a heuristic scheduling algorithm
that produces a good throughput performance and a reduced
average delay. The validity of the introduced approximations
has been assessed by simulations, which have confirmed
the good accuracy of the QoS parameters estimation, with
a significantly reduced computational time with respect to
extensive simulations. The proposed analytical framework
can be adapted to other memoryless scheduling algorithms
based on channel quality states, buffer occupancy states, and
retransmission number states. As a possible future work, our
framework, which is based on time-slot contention, could be
extended to include frequency-slot contention policies.
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