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On the Equivalence of Maximum SNR and MMSE
Estimation: Applications to Additive Non-Gaussian
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Abstract—The minimum mean-squared error (MMSE) is one of
the most popular criteria for Bayesian estimation. Conversely, the
signal-to-noise ratio (SNR) is a typical performance criterion in
communications, radar, and generally detection theory. In this pa-
per, we first formalize an SNR criterion to design an estimator, and
then we prove that there exists an equivalence between MMSE and
maximum-SNR estimators, for any statistics. We also extend this
equivalence to specific classes of suboptimal estimators, which are
expressed by a basis expansion model (BEM). Then, by exploiting
an orthogonal BEM for the estimator, we derive the MMSE esti-
mator constrained to a given quantization resolution of the noisy
observations, and we prove that this suboptimal MMSE estimator
tends to the optimal MMSE estimator that uses an infinite resolu-
tion of the observation. Besides, we derive closed-form expressions
for the mean-squared error (MSE) and for the SNR of the proposed
suboptimal estimators, and we show that these expressions consti-
tute tight, asymptotically exact, bounds for the optimal MMSE,
and maximum SNR.

Index Terms—Bayesian estimation, maximum SNR, impulsive
noise, Laplacian distributions, MMSE, non-Gaussian noise.

I. INTRODUCTION

BAYESIAN estimation of a parameter, a source, or a sig-
nal, from noisy observations, is a general framework in

statistical inference, with widespread applications in signal pro-
cessing, communications, controls, machine learning, etc. [1].
The minimum mean-squared error (MMSE) is the most popular
criterion in this framework, intuitively connected to the max-
imum signal-to-noise ratio (MSNR) criterion, mostly used for
communication and detection applications [1], [2]. After the first
seminal work in [3], the connections between the MMSE and
the signal-to-noise ratio (SNR) have attracted several research
interests, and there is a quite abundant literature to establish
links among them and the mutual information (see [4]–[8] and
the references therein). In the context of signal classification
(i.e., detection), [9] has shown the interdependencies between
the mean-squared error (MSE) and other second-order mea-
sures of quality, including many definitions of SNR. However,
a thorough investigation of the links between MSE and SNR,
in the context of estimation, is still lacking. Some connections
between MMSE and SNR have been explored in [3], which
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proves that the MMSE in the additive noise channel is inversely
proportional to the SNR. However, the SNR of [3] is defined at
the input of the estimator, while we are interested in the SNR at
the output of the estimator, as in [10].

Motivated to further explore the links between SNR and
MSE, in this paper we first define the SNR for the output of a
generic estimator, and then we prove the equivalence between
the MMSE and MSNR criteria in the context of estimation
design. Actually, when the parameter to be estimated and the ob-
servations are jointly Gaussian, it is well known that the MMSE
estimator, the maximum likelihood (ML) estimator, and the
maximum a posteriori (MAP) estimator, are linear in the
observation and are equivalent to the MSNR estimator (up to
a scalar multiplicative coefficient) [11], [12]: indeed, in this
simple Gaussian case, all these estimators produce the same
output SNR, which is both maximum and identical to the
input SNR. Differently, this paper considers a more general
case, where the parameter to be estimated and the observations
can be non-Gaussian. In this general case, to the best of our
knowledge, the natural question if the MMSE and MSNR
estimation criteria are equivalent or not, is still unanswered1.
While classical estimation typically deals with the MMSE
criterion, some authors have been looking for an MSNR
solution, such as [10], ignoring if this solution has anything
to do with the MMSE solution. Specifically, this paper proves
that the equivalence between MMSE and MSNR estimators
always holds true, even when the parameter to be estimated
and the observations are non-Gaussian: in this case, both the
MMSE and the MSNR estimators are usually nonlinear in the
observations. This equivalence establishes a strong theoretical
link between MMSE and MSNR criteria, traditionally used in
different contexts, i.e., estimation and detection, respectively.

Then, we prove that the equivalence between the MSNR
and MMSE criteria holds true also for any suboptimal esti-
mator that is expressed by a linear combination of fixed basis
functions, according to a basis expansion model (BEM) [13].
Within this framework, we derive the suboptimal MMSE es-
timator, and other equivalent MSNR estimators, constrained
to a given quantization resolution of the noisy observations.
Notheworthy, each quantization-constrained estimator corre-
sponds to a specific choice of the set of BEM functions. These
quantization-constrained estimators may have practical interest
in low-complexity applications that use analog-to-digital (A/D)
converters with limited number of bits, such as low-power wire-
less sensor applications. Specifically, we prove that the sub-
optimal quantization-constrained MMSE (Q-MMSE) estimator

1We believe that this question has never been addressed in detail in the context
of estimation problems: the investigation done in [9] for detection cannot be
extended to estimation, since the SNR definitions used in [9] are quite different
from the output SNR considered in this paper.
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tends to the optimal (unquantized) MMSE estimator that uses
an infinite resolution of the observation. In addition, we derive
closed-form expressions for the SNR and for the MSE of the
proposed suboptimal estimators. Note that these closed-form
expressions can be used as lower bounds on the SNR of the
MSNR estimators, or as upper bounds on the MSE of the opti-
mal MMSE estimator: indeed, in case of non-Gaussian statistics,
analytical expressions for the MMSE value are difficult to ob-
tain [14]; anyway, we also provide some analytical expressions
for the MMSE and MSNR values.

To provide an example for practical applications, we apply
the derived suboptimal estimators to an additive non-Gaussian
noise model, where the noisy observation is simply a signal-
plus-noise random variable. We include a numerical example
where the signal has a Laplacian statistic, while the noise dis-
tribution is a Laplacian mixture, bearing in mind that the re-
sults in this paper are valid for any signal and noise statis-
tics. The obtained results show that the proposed suboptimal
Q-MMSE and quantization-constrained MSNR (Q-MSNR) esti-
mators outperform other alternative estimators discussed in Sec-
tion V. The numerical results also confirm that, when the size of
the quantization intervals tends to zero, the MSE (and SNR)
of the Q-MMSE estimator tends to the optimal MMSE (and
MSNR) value, as expected by design.

The rest of this paper is organized as follows. Section II
proves the equivalence between the MSNR and MMSE criteria
and discusses several theoretical links. In Section III we derive
the equivalence results for BEM-based estimators, such as the
Q-MMSE. Section IV considers the special case of additive non-
Gaussian noise channel, while Section V illustrates a numerical
example. Section VI concludes the paper.

II. MAXIMUM SNR AND MMSE ESTIMATORS

For real-valued scalar observation and parameters, Bayesian
estimation deals with statistical inference of a random parameter
of interest x from a possibly noisy observation y, assuming
that the joint probability density function (pdf) fXY(x, y) is
known. The estimator of the scalar parameter x is a function
g(·) that produces the estimated parameter x̂ = g(y). By a linear
regression analysis, for any zero-mean x and y and any estimator
g(·), it is possible to express the estimator output as

x̂ = g(y) = Kgx + wg , (1)

where

Kg =
EXY{xg(y)}

σ2
x

, (2)

σ2
x = EX{x2}, and wg is the zero-mean output noise, which is

orthogonal to the parameter of interest x and characterized by
σ2

Wg
= EW g

{w2
g}. It is well known that the estimator gMMSE(·)

that minimizes the Bayesian MSE

Jg = EXY{(g(y) − x)2} (3)

is expressed by [1], [2], [14], [15]

gMMSE(y) = EX |Y{x|y} =
∫ ∞

−∞
xfX |Y(x|y)dx. (4)

However, other Bayesian criteria are possible, such as the
MAP, the minimum mean-absolute error, etc. [2]. Actually, we
may choose g(·) that maximizes the SNR at the estimator output

in (1), as done for detection in [10], [16]. In this sense, the
definition of Kg in (2) leads to the output SNR

γg =
K2

g σ2
x

σ2
wg

, (5)

defined as the power ratio of the noise-free signal and the uncor-
related noise in (1). Alternatively, we may maximize the gain
Kg in (2) (instead of the SNR), under a power constraint.

Using the orthogonality in (1), the output power is

EY{g2(y)} = K2
g σ2

x + σ2
wg

, (6)

and hence, using (2), (3) and (6), we obtain

Jg = EY{g2(y)} + (1 − 2Kg )σ2
x (7)

= (1 − Kg )2σ2
x + σ2

wg
. (8)

From (5) and (8), it is straightforward that the MSE Jg and the
SNR γg are linked by

Jg = (1 − Kg )2σ2
x +

K2
g σ2

x

γg
. (9)

A. Equivalence of MSNR and MMSE Estimators

While for jointly Gaussian statistics the equivalence between
MSNR and MMSE is easy to establish (since the MMSE esti-
mator is linear in y), herein we consider the most general case,
without any assumption on the statistics of x and y.

Theorem 1: Among all the possible estimators g(·), the
MMSE estimator (4) maximizes the SNR (5) at the estimator
output, for any pdf fXY(x, y).

Proof: Let us denote with gMMSE(y) the MMSE estimator
(4), and with KgMMSE its associated gain (2). In addition, let us
denote with gMSNR(y) an estimator that maximizes the SNR (5),
as expressed by

gMSNR(y) = arg max
g(·)

[
K2

g σ2
x

EY{g2(y)} − K2
g σ2

x

]
, (10)

and by KgMSNR its associated gain in (2). This MSNR estimator
is not unique, since also any other estimator

ga,MSNR(y) = agMSNR(y), (11)

with a ∈ R \ {0}, maximizes the SNR. Indeed, due to the scal-
ing factor a, by means of (10) both the noise-free power K2

g σ2
x

and the noise power σ2
wg

= EY{g2(y)} − K2
g σ2

x are multiplied
by the same quantity a2 , hence the SNR in (5) is invariant with
a. By (1) and (2), the gain Kga , MSNR of ga,MSNR(y) is equal to

Kga , MSNR = aKgMSNR . (12)

Conversely, the MMSE estimator is unique and has a unique gain
KgMMSE . Thus, we have to prove the equivalence of the MMSE
estimator gMMSE(y) with the specific ga,MSNR(y) characterized
by Kga , MSNR = KgMMSE . Therefore, by (12), we have to choose
the MSNR estimator with the specific value a = ã expressed by

ã =
KgMMSE

KgMSNR

. (13)

The MSNR estimator gã,MSNR(y) is actually the MSNR esti-
mator that corresponds to an optimization problem restricted to
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the subclass of all the estimators g(·) characterized by the same
gain Kg = KgMMSE , as expressed by

gã,MSNR(y) = arg max
g (·),Kg =Kg MMSE

[
K2

g σ2
x

EY{g2(y)} − K2
g σ2

x

]
. (14)

Note that, despite the constraint Kg = KgMMSE , we still obtain
the unconstrained MMSE estimator (4), which by definition
belongs to the subclass of estimators being characterized by
Kg = KgMMSE . Using the constraint Kg = KgMMSE , it is clear in
(9) that the dependence of the MSE functional Jg on g(·) is only
through γg , and no longer also through Kg as in the general case:
consequently, the MMSE estimator is

gMMSE(y) = arg min
g (·),Kg =Kg MMSE

[Jg ] = arg min
g(·),Kg =Kg MMSE

[
σ2

x

γg

]

= arg max
g (·),Kg =Kg MMSE

[γg ] = gã,MSNR(y). (15)

Thus, (15) shows that the estimator that maximizes the SNR
with a fixed Kg = KgMMSE is equivalent to the estimator that
minimizes the MSE, i.e., gã,MSNR(y) = gMMSE(y). �

Basically, Theorem 1 explains that {ga,MSNR(y)} are all
scaled versions of gMMSE(y). In other words, each scaled ver-
sion of the MSNR produces the same SNR, but a different MSE:
only a unique MSNR estimator is the MMSE estimator, and, in
this sense, the two estimation criteria are equivalent.

B. Theoretical Properties of MSNR and MMSE Estimators

Property 1: The output power EY{g2
MMSE(y)} of the MMSE

estimator (4) is equal to KgMMSEσ
2
x . Indeed, from (2) and (4), we

obtain

KgMMSEσ
2
x = EXY{xgMMSE(y)} = EXY{xEX |Y{x|y}}

=
∫ ∞

−∞
EX |Y{xEX |Y{x|y}|y}fY(y)dy

=
∫ ∞

−∞

[
EX |Y{x|y}

]2
fY(y)dy

= EY{g2
MMSE(y)}. (16)

Property 2: The MMSE JgMMSE is equal to (1 − KgMMSE)σ
2
x .

Indeed, from (7) and (16), we obtain

JgMMSE = EY{g2
MMSE(y)} + (1 − 2KgMMSE)σ

2
x

= (1 − KgMMSE)σ
2
x . (17)

Property 3: The power of the uncorrelated noise term wg

at the output of the MMSE estimator is equal to KgMMSE(1 −
KgMMSE)σ

2
x . Indeed, from (6), (16), and (17), we obtain

σ2
wg MMSE

= EY{g2
MMSE(y)} − K2

gMMSE
σ2

x

= KgMMSE(1 − KgMMSE)σ
2
x (18)

= KgMMSEJgMMSE .

Equation (18) confirms that KgMMSE ∈ [0, 1].

TABLE I
SUMMARY OF THEORETICAL PROPERTIES

Property 4: The MSNR γgMSNR is equal to KgMMSE/(1 −
KgMMSE). Indeed, from (5) and (18), we obtain

γgMSNR = γgMMSE =
K2

gMMSE
σ2

x

σ2
wg MMSE

=
KgMMSE

1 − KgMMSE

. (19)

By (16)–(19), the MSNR is related to the MMSE by

γgMSNR = γgMMSE =
EY{g2

MMSE(y)}
JgMMSE

=
σ2

x − JgMMSE

JgMMSE

. (20)

Property 5: The unbiased MMSE (UMMSE) estimator
gUMMSE(y) maximizes the SNR: therefore, the UMMSE esti-
mator is a scaled version of the MMSE estimator, i.e.,

gUMMSE(y) =
gMMSE(y)
KgMMSE

. (21)

Indeed, for any estimator g(y), we can make it unbiased by
dividing g(y) by Kg , as expressed by

x̂ = h(y) =
g(y)
Kg

= x +
wg

Kg
. (22)

By (1), h(y) = Khx + wh , therefore Kh = 1 and wh =
wg/Kg . Hence, for unbiased estimators, the minimization over
h(·) of the MSE σ2

wh
is equivalent to the minimization over g(·)

of σ2
wg

/K2
g , which coincides with the maximization over g(·)

of the SNR (5). As a consequence, the UMMSE estimator is the
unique MSNR estimator characterized by KgMSNR = 1. Since all
MSNR estimators are scaled versions of gMMSE(y), the unique
UMMSE estimator coincides with (21).

Property 6: The MSE JgUMMSE of the UMMSE estimator is
equal to JgMMSE/KgMMSE . Indeed, from (21), (16), and (17), it is
easy to show that

JgUMMSE =
σ2

wg MMSE

K2
gMMSE

=
1 − KgMMSE

KgMMSE

σ2
x =

JgMMSE

KgMMSE

. (23)

Since KgMMSE ≤ 1, then JgUMMSE ≥ JgMMSE .
The Properties 1–6, summarized in Table I, show that all the

theoretical expressions for both MMSE and MSNR basically
depend on KgMMSE . Since the definition of KgMMSE in (2) involves
a double integration over the joint pdf fXY(x, y), in general the
exact value of KgMMSE is difficult to obtain analytically. Hence,
we introduce some suboptimal estimators that allow for an an-
alytical evaluation of their MSE and SNR.
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III. SUBOPTIMAL ESTIMATORS

Suboptimal MMSE and MSNR estimators for non-Gaussian
statistics are interesting for several reasons. For instance, closed-
form computation of the MMSE estimator gMMSE(y) in (4) may
be cumbersome. Furthermore, the optimal MMSE nonlinear
function gMMSE(y) may be too complicated to be implemented
by low-cost hardware, such as wireless sensors. Additionally,
the MMSE JgMMSE is difficult to compute in closed form. Con-
sequently, a simpler analytical expression for a suboptimal es-
timator g(·) may permit to compute the associated MSE and
SNR, which provide an upper bound on the MMSE and a lower
bound on the MSNR, respectively.

Considering a wide class of suboptimal estimators, we assume
that g(·) is expressed by a BEM of N known functions ui(·)
and N unknown coefficients gi :

g(y) =
N∑

i=1

giui(y). (24)

Each function ui(y) can be interpreted as a specific (possi-
bly highly suboptimal) estimator, and g(y) in (24) as a linear
combination of simpler estimators. We are not interested in the
optimization of the basis functions {ui(·)}: therefore, the design
of g(·) becomes the design of the coefficients {gi}. Actually,
we have no constraints on the choice of {ui(·)}; for instance,
saturating or blanking functions, or a mix of them, are typically
beneficial to contrast impulsive noise [10], [16]. However, in
Section III-C, we will show that an orthogonal design simplifies
the computation of {gi}, and that the proposed design is general
enough for any context.

In the following two subsections, we show that, for BEM-
constrained suboptimal estimators (24), the MSNR and MMSE
design criteria still continue to be equivalent.

A. B-MSNR Estimators

Herein we derive the MSNR estimators constrained to the
BEM (24), denoted as BEM-MSNR (B-MSNR) estimators. By
(6) and (24), the SNR γg in (5) can be expressed by

γg =
K2

g σ2
x

EY{g2(y)} − K2
g σ2

x

=
gT θθT g

gT (σ2
xR − θθT )g

. (25)

where

g = [g1 , g2 , ..., gN ]T , (26)

θ = [θ1 , θ2 , ..., θN ]T , (27)

θi = EXY{xui(y)}, (28)

R =

⎡
⎢⎣

R11 · · · R1N

...
. . .

...
RN 1 · · · RN N

⎤
⎥⎦, (29)

Rij = EY{ui(y)uj (y)}. (30)

In order to maximize (25), we take the eigenvalue decompo-
sition of the symmetric matrix σ2

xR − θθT = UΛUT , which
is assumed to be full rank. Note that U is orthogonal and Λ is
diagonal. Then, we express the SNR in (25) as

γg =
vT bbT v

vT v
, (31)

where v = Λ1/2UT g and b = Λ−1/2UT θ. The ratio in (31)
is maximum [17] when v = vB-MSNR = cb = cΛ−1/2UT θ,
where c ∈ R \ {0} is an arbitrary constant, and therefore the
SNR in (25) is maximum when the estimator is

gB-MSNR = UΛ−1/2vB-MSNR = c(σ2
xR − θθT )−1θ. (32)

By (25) and (32), using the Sherman-Morrison formula [17],
the SNR of B-MSNR estimators is expressed by

γgB-MSNR = θT (σ2
xR − θθT )−1θ =

θT R−1θ

σ2
x − θT R−1θ

. (33)

B. B-MMSE Estimator

Now we derive the MMSE estimator constrained to the BEM
(24), denoted as BEM-MMSE (B-MMSE) estimator. By (24)
and (26)–(30), the MSE Jg in (8) becomes

Jg = σ2
x − 2gT θ + gT Rg. (34)

By taking the derivative of (34) with respect to g and setting it
to zero, we obtain the B-MMSE estimator, expressed by

gB-MMSE = R−1θ. (35)

By (34) and (35), the MSE of the B-MMSE estimator is

JgB-MMSE = σ2
x − gT

B-MMSERgB-MMSE = σ2
x − θT R−1θ. (36)

Using (36), the SNR (33) can be expressed by

γgB-MSNR =
θT R−1θ

JgB-MMSE

=
σ2

x − JgB-MMSE

JgB-MMSE

. (37)

The similarity of (37) and (20) suggests a link between B-MMSE
and B-MSNR estimators, as shown in Theorem 2.

Theorem 2: The B-MSNR estimator (32) coincides with the
B-MMSE estimator (35), when c = σ2

x − θT R−1θ.
Proof: Using the Sherman-Morrison formula [17], (32)

becomes

gB-MSNR =
c

σ2
x − θT R−1θ

R−1θ. (38)

When c = σ2
x − θT R−1θ, gB-MSNR in (38) coincides with

gB-MMSE in (35). �
Theorem 2 proves that the B-MMSE estimator maximizes

the SNR (25) among all the BEM-based estimators: therefore,
each B-MSNR estimator is a scaled version of the B-MMSE
estimator. Also in this BEM-constrained case the equivalence
between B-MMSE and B-MSNR estimators is valid for any
statistic of the signal and of the noisy observation.

Note that in Theorem 2 the functions {ui(·)} are arbitrary,
but fixed. Differently, if we fix the coefficients {gi} in (24), and
perform the optimization over a subset of functions, the equiva-
lence between MMSE and MSNR solutions may not hold true.
Indeed, in case of impulsive noise mitigation by means of a soft
limiter (SL), expressed by gSL(y) = −β if y ≤ −β, gSL(y) = y
if −β < y < β, and gSL(y) = β if y ≥ β, the optimization over
β > 0 generally produces an MMSE solution [15] that is differ-
ent from the MSNR solution [16]. Therefore, the equivalence
between MMSE and MSNR estimators can be invalid for non-
BEM-based suboptimal estimators.

In addition to MMSE, there exist other criteria that maximize
the SNR: as shown in Appendix A, the BEM-based unbiased
MMSE estimator and a BEM-based estimator that maximizes
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the gain (2) (subject to a power constraint) both produce the
same SNR of B-MMSE and B-MSNR estimators.

C. Q-MMSE Estimator

Herein we prove that, by choosing convenient basis functions
{ui(·)} in (24), the B-MMSE estimator (35) converges to the
optimal MMSE estimator (4). Indeed, the rectangular disjoint
(orthogonal) basis functions

ui(y) =
{

1, if yi−1 < y ≤ yi,

0, otherwise,
(39)

for i = 1, ..., N , with y0 = −∞ and yN = ∞, greatly simplify
the computation of the coefficients {gi}. Basically, we are ap-
proximating the estimator g(y) by a piecewise-constant func-
tion. Using (39), Rij in (30) becomes

Rij =
{

FY(yi) − FY(yi−1), if i = j,

0, if i �= j,
(40)

where FY(y) is the cumulative distribution function (cdf) of the
observation y. In this case, the matrix R in (29) is diagonal.
Therefore, the coefficients of this specific B-MMSE estimator
(35), which we refer to as Q-MMSE estimator, simply become

gi,Q-MMSE =
θi

Rii
, (41)

while the associated MSE (36) is expressed by

JgQ-MMSE = σ2
x −

N∑
i=1

θ2
i

Rii
. (42)

Note that the Q-MMSE estimator (41) can also be inter-
preted as the MMSE estimator when the observation y has
been discretized using N quantization intervals (yi−1 , yi ], for
i = 1, ..., N . Moreover, we should bear in mind that the number
N of quantization levels, as well as the edges of the quantization
intervals, are fixed but arbitrary. Thus, the proposed framework
finds a natural application when the observed signal undergoes
an A/D conversion stage.

However, it is important to prove that, in case of infinite num-
ber of quantization levels, the Q-MMSE estimator (41) tends to
the optimal MMSE estimator (4) for unquantized observations:
hence, the number N of quantization levels enables a tradeoff
between performance and complexity.

Theorem 3: When the interval size Δyi = yi − yi−1 tends to
zero for i = 2, ..., N − 1, and when y1 and yN −1 tend to y0 =
−∞ and yN = ∞, respectively, then the Q-MMSE estimator
(41) tends to the MMSE estimator (4).

Proof: When Δyi → 0, for i = 2, ..., N − 1, from (39) it is
easy to show that fX |Y(x|y)ui(y) → fX |Y(x|yi)ui(y); hence,
for i = 2, ..., N − 1, (28) gives

θi =
∫ ∞

−∞
x

∫ yi

yi−1

fX |Y(x|y)fY(y)dydx
Δyi →0−−−−→

→ fY(yi)Δyi

∫ ∞

−∞
xfX |Y(x|yi)dx. (43)

In addition, from (39) and (40), we have

Rii =
∫ yi

yi−1

fY(y)dy
Δyi →0−−−−→ fY(yi)Δyi. (44)

Fig. 1. Signal estimation in additive noise channels.

By taking the ratio between (43) and (44), gi,Q-MMSE in (41)
tends to gMMSE(yi) = EX |Y{x|yi} in (4), for i = 2, ..., N − 1.
This result can be extended in order to include i = 1 and
i = N by noting that, when y1 → y0 = −∞ and yN −1 →
yN = ∞, then fX |Y(x|y) → fX |Y(x|y1) for y ∈ (y0 , y1 ] and
fX |Y(x|y) → fX |Y(x|yN −1) for y ∈ (yN −1 , yN ). �

Theorem 3 proves that, when the size of the quantization in-
tervals tends to zero, the Q-MMSE estimator converges to the
MMSE estimator, regardless of the statistics of the signal of
interest x and of the noisy observation y. In particular, the SNR
of the Q-MMSE estimator converges to the SNR of the MMSE
estimator. Moreover, since a Q-MMSE estimator is a particu-
lar B-MMSE estimator, by Theorem 2, the Q-MMSE estimator
is also a Q-MSNR estimator, for the same set of quantization
thresholds. Noteworthy, if we would optimize the quantization
intervals {(yi−1 , yi ]} [i.e., the functions {ui(·)} in (39)] by keep-
ing the coefficients gi as fixed, we could end up with different
quantization thresholds in an MMSE and MSNR sense.

IV. Q-MMSE IN ADDITIVE NOISE CHANNELS

Herein we provide further insights on the coefficients (41) of
the Q-MMSE estimator, when the observations are impaired by
an additive noise n, independent from x, as expressed by

y = x + n (45)

and depicted in Fig. 1. The additive noise model (45) occurs
in several applications, especially if the data are obtained by
quantized measurements. Indeed, Q-MMSE estimators are par-
ticularly useful in realistic scenarios where either the source, or
the noise, or both, depart from the standard Gaussian assump-
tion. These scenarios include: (a) additive noise with a high
level of impulsiveness [18]–[24]; (b) additive noise whose pdf
is a mixture of statistics caused by the random occurrence of
different noise sources [25]–[29]; (c) source represented by a
pdf mixture, such as in applications (e.g., audio, medical, etc.)
that involve effective denoising of sounds or images [30], [31].
The optimal coefficients {gi} obviously depend on the specific
pdfs of source and noise, and the numerical results reported in
Section V give some evidence of the usefulness of Q-MMSE
estimation in an additive non-Gaussian observation model.

According to the BEM model, we assume that the quan-
tization thresholds have been fixed by some criterion. Despite
possible criteria for threshold optimization are beyond the scope
of this work, in Section V we give some insights about this issue
and consider some heuristic solutions.

To specialize the results of Section III to the additive noise
model in (45), we observe that the pdf fY(y) is the convolution
between fX(x) and fN(n). Thus, the coefficients θi and Rii

defined in (28) and (30) can be calculated from the first-order
statistics of x and n. Using (45), (28) and (39), we obtain

θi =
∫ ∞

−∞
xfX(x)

∫ yi −x

yi−1 −x

fN(n)dndx = D(yi) − D(yi−1),

(46)
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where

D(y) =
∫ ∞

−∞
xfX(x)FN(y − x)dx. (47)

An alternative expression can be obtained by exchanging the
integration order, which leads to

θi =
∫ ∞

−∞
fN(n)

∫ yi −n

yi−1 −n

xfX(x)dxdn = D(yi) − D(yi−1),

(48)
where

D(y) =
∫ ∞

−∞
fN(n) [(y − n)FX(y − n) − IX(y − n)]dn,

(49)

IX(y) =
∫ y

−∞
FX(x)dx. (50)

Which expression is preferable, between (47) and (49), depends
on the expressions of fX(x) and fN(n).

Using (40) and (45), we obtain

Rii = FY(yi) − FY(yi−1), (51)

FY(y) =
∫ ∞

−∞
fX(x)FN(y − x)dx (52)

=
∫ ∞

−∞
fN(n)FX(y − x)dn. (53)

Thus, using (41), either (46) or (48), and (51), the Q-MMSE
estimator for the additive noise model (45) is expressed by

gi,Q-MMSE =
D(yi) − D(yi−1)
F (yi) − F (yi−1)

. (54)

V. A NUMERICAL EXAMPLE

In this section, we want to numerically compare the MSE and
the SNR performances of the Q-MMSE estimator with those of
the optimal MMSE estimator, in order to show the usefulness
of Q-MMSE estimators with a limited number of quantization
levels. Therefore, first we derive the mathematical expressions
of the optimal MMSE estimator and of the Q-MMSE estimator,
assuming a non-trivial additive noise model (45) where both the
signal and the noise are non-Gaussian. Specifically, we model
the signal x with a Laplace pdf

fX(x) =
α

2
e−α |x|, (55)

with α =
√

2/σx , and the noise n with a Laplace mixture pdf

fN(n) = p0
β0

2
e−β0 |n | + p1

β1

2
e−β1 |n |, (56)

with {βm =
√

2/σn,m}m=0,1 , R = σ2
n,0/σ2

n,1 , σ2
n = p0σ

2
n,0 +

p1σ
2
n,1 , p0 + p1 = 1 and 0 ≤ p0 ≤ 1. Basically, (56) models a

noise generated by two independent sources: each noise source,
characterized by a Laplace pdf with average power σ2

n,m , occurs
with probability pm . Similar results can be obtained by modeling
either the noise, or the signal, or both, as a Gaussian mixture,
thus covering a wide range of practical applications of non-
Gaussian denoising.

As detailed in Appendix B, direct computation of (4) with
(55) and (56) yields the optimal MMSE estimator

gMMSE(y) = sgn(y)×

×
∑1

m=0 pm

[
C1,m (e−βm |y | − e−α |y |) − C2,m βm |y|e−α |y |]

∑1
m=0 pm C2,m

(
αe−βm |y | − βm e−α |y |

) ,

(57)

C1,m =
α2β2

m

(α2 − β2
m )2 , C2,m =

αβm

2(α2 − β2
m )

. (58)

The Q-MMSE estimator can be calculated by solving (47) and
(52) using the pdf in (55) and (56): as detailed in Appendix C,
when y > 0, this calculation leads to

D(y) =
1∑

m=0

pm
β2

m (3α2 − β2
m )e−αy

2α(α2 − β2
m )2

−
1∑

m=0

pm
α2βm e−βm y

(α2 − β2
m )2 +

1∑
m=0

pm
β2

m ye−αy

2(α2 − β2
m )

, (59)

FY(y) = 1 −
1∑

m=0

pm
α2e−βm y − β2

m e−αy

2(α2 − β2
m )

, (60)

which inserted into (54) give the final result.
In addition to MMSE and Q-MMSE, other two alternative

estimators are included in this comparison: (a) the sampled
MMSE (S-MMSE) estimator gi,S-MMSE, obtained by sampling
the optimal MMSE estimator gMMSE(·) at the midpoint of each
quantization interval, i.e., gi,S-MMSE = gMMSE((yi−1 + yi)/2);
and (b) the optimal quantizer (OQ) obtained by applying the
Lloyd-Max algorithm [32] to the signal pdf fX(x). Note that
the Lloyd-Max OQ exploits the statistical knowledge of the
parameter of interest x only, and neglects the noise, while the
Q-MMSE estimator-quantizer also exploits the knowledge of
the pdf of noise n: hence, the Q-MMSE estimator is expected
to give better performance.

With reference to the choice of the N − 1 thresholds {yi} of
the Q-MMSE estimators, a heuristic approach chooses all the
N − 1 thresholds equispaced, such that the overload probability
Pol = P{y ∈ [−∞, y1) ∪ [yN −1 ,∞)} of the quantizer is fixed:
this limits the amount of saturating distortion. Another option is
to choose the non-uniform thresholds {yi} given by the Lloyd-
Max algorithm [32] applied to the signal pdf fX(x) in (55).
For all the quantized estimators, we use the acronym NU for
non-uniform quantization and U for uniform quantization.

Fig. 2 compares the shape of the Q-MMSE estimator
gQ-MMSE(·) with the shape of the optimal (unquantized) MMSE
estimator gMMSE(·), when σx = 1, σn = 4, R = 0.001, p0 =
0.9, and the N − 1 thresholds are equispaced between y1 =
−10 and yN −1 = 10, which induce an overload probability
Pol ≈ 0.0327. Since all the considered MMSE estimators are
odd functions of the input y, Fig. 2 only displays the positive
half. Fig. 2 confirms that, when the number N of quantiza-
tion levels increases, the Q-MMSE estimator tends to the op-
timal MMSE estimator. Note also that the Q-MMSE estimator
gi,Q-MMSE is different from the staircase curve of the S-MMSE
estimator gi,S-MMSE.
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Fig. 2. Comparison between the optimal (unquantized) MMSE estimator and
Q-MMSE estimators with uniform quantization (N is the number of intervals).

Fig. 3. SNR gain Gg of different estimators as a function of the input SNR
σ2

x /σ2
n .

Fig. 3 shows the SNR gain Gg provided by different estima-
tors g(·). The SNR gain Gg is defined as

Gg =
γg

σ2
x/σ2

n

, (61)

where γg is the SNR at the output of the estimator, and σ2
x/σ2

n is
the SNR at the input of the estimator. The signal and noise
parameters are the same of Fig. 2, except for the variable
σn . Fig. 3 compares the SNR performance of Q-MMSE, S-
MMSE, and OQ estimators, assuming uniform and non-uniform
quantization versions (with labels U and NU in the legend
of Fig. 3): the overload regions are the same for both ver-
sions and have been selected by the Lloyd-Max algorithm,
which ends up with an overload probability Pol ≈ 0.0093 when
σ2

x/σ2
n = 0 dB and Pol ≈ 0.0805 when σ2

x/σ2
n = −12 dB. As

a reference, Fig. 3 also includes an optimal Q-MMSE (with
N = 127) with uniform quantization obtained by an exhaus-
tive maximization of the SNR gain over all the possible choices
for the overload regions (i.e., for all the possible choices of
y1 = −yN −1): this is equivalent to an optimization of the inter-
val size Δy = (yN −1 − y1)/(N − 2) of the uniform quantiza-
tion intervals. When the number of quantization intervals N is
sufficiently high, the SNR of this optimal Q-MMSE estimator

Fig. 4. Comparison between different estimators with non-uniform
quantization (N is the number of intervals).

Fig. 5. MSE Jg of different estimators as a function of the input SNR σ2
x /σ2

n .

basically coincides with the SNR of the optimal (unquantized)
MMSE, whose simulated SNR gain is included in Fig. 3 as well.

Fig. 3 confirms that the SNR gain of the Q-MMSE estimator is
larger than for the other quantized estimators, provided that the
quantization intervals are the same. The SNR of the Q-MMSE
estimator can be further improved by increasing the number
of intervals and by optimizing the (uniform) interval sizes, as
shown in Fig. 3 by the curve with N = 127 with optimized
overload regions. In addition, Fig. 3 shows that the SNR of the
optimal Q-MMSE estimator is very close to the simulated SNR
of the optimal (unquantized) MMSE estimator. Therefore, the
proposed Q-MMSE approach permits to obtain analytical tight
lower bounds on the SNR of the optimal (unquantized) MMSE
estimator.

Fig. 4 compares the function g(y) for the estimators of Fig. 3
with non-uniform quantization, when σ2

x/σ2
n = −15 dB. Fig. 4

highlights that the function g(y) of the Lloyd-Max OQ is nonde-
creasing, because the noise is neglected; differently, the function
g(y) of the (Q-) MMSE estimators can be non-monotonic, like
in this specific example.

Fig. 5 displays the MSE of different estimators, in the same
scenario of Fig. 3. It is evident that the Q-MMSE estimator
provides the lowest MSE among all the quantized estimators
that use the same quantization intervals. Note that the analytical



RUGINI AND BANELLI: ON THE EQUIVALENCE OF MSNR AND MMSE ESTIMATION 6197

MSE of the Q-MMSE estimator can be used as an upper bound
of the minimum value JgMMSE (obtained in Fig. 5 by simulation).
Similarly to the SNR analysis of Fig. 3, tighter upper bounds
on the MMSE JgMMSE can be obtained by increasing the number
of intervals N and by further optimization over all the possible
overload regions.

VI. CONCLUSION

In this paper, we have studied a meaningful definition of the
MSNR estimator, and we established its equivalence with the
MMSE estimator, regardless of the statistics of the noise and of
the parameter of interest. We have also extended this equivalence
to a specific class of suboptimal estimators expressed as a linear
combination of arbitrary (fixed) functions; conversely, we have
explained that the same equivalence does not hold true in general
for non-BEM suboptimal estimators.

The developed theoretical framework has been instrumental
to study Bayesian estimators whose input is a quantized obser-
vation of a parameter of interest corrupted by an additive noise.
We have shown that, when the size of the quantization intervals
goes to zero, the Q-MMSE (Q-MSNR) estimator exactly tends
to the MMSE (MSNR) estimator for unquantized observations.
Furthermore, by a practical example, we have shown that, using
a fairly limited number of quantization levels, the Q-MMSE
estimator can easily approach the performance of the optimal
(unquantized) MMSE estimator: the designed Q-MMSE estima-
tor, clearly, outperforms in SNR (and in MSE) other suboptimal
estimators.

APPENDIX A
OTHER BEM-BASED ESTIMATORS

We detail BEM-based estimators that produce the maximum
SNR, similarly to B-MMSE and B-MSNR estimators: unbiased
estimators and a maximum-gain estimator.

Unbiased estimators are defined by EY |X{g(y)|x} = x and
hence are characterized by Kg = 1 in (1). By (2), (24), (26)–
(28), for the BEM-based estimators we have

Kg =
gT θ

σ2
x

. (62)

Therefore, the BEM-based unbiased MSNR (B-UMSNR) es-
timator is obtained by maximizing (25) subject to the con-
straint gT θ = σ2

x , while the BEM-based unbiased MMSE (B-
UMMSE) estimator is obtained by minimizing (34) subject to
the same constraint. By inserting the constraint gT θ = σ2

x into
(25) and (34), both optimizations are equivalent to the mini-
mization of the output power EY{g2(y)} = gT Rg subject to
gT θ = σ2

x , which leads to

gB-UMSNR = gB-UMMSE =
σ2

x

θT R−1θ
R−1θ. (63)

The solution (63) is equivalent to (38) with

c =
σ2

x(σ2
x − θT R−1θ)
θT R−1θ

. (64)

Hence, the B-UMMSE estimator gives the maximum SNR
achievable by BEM-based estimators, and is a scaled version
of the B-MMSE estimator (35).

An alternative Bayesian criterion is the maximization of the
gain Kg (2) or (62), subject to a power constraint. Using the
output power constraint EY{g2(y)} = gT Rg = P , the BEM-
based maximum-gain (B-MG) estimator is expressed by

gB-MG =

√
P

θT R−1θ
R−1θ, (65)

which is a scaled version of the B-MMSE estimator and hence
an MSNR estimator among the BEM-based estimators.

APPENDIX B
DERIVATION OF (57)

Here we show that the computation of (4), when the signal
pdf is (55) and the noise pdf is (56), leads to (57). First, using
the Bayes’ theorem, the MMSE estimator (4) is rewritten as

gMMSE(y) =

∫ ∞
−∞ xfY |X(y|x)fX(x)dx

fY(y)
; (66)

in addition, the noise pdf (56) can be rewritten as

fN(n) =
1∑

m=0

pm fN ,m (n) (67)

fN ,m (n) =
βm

2
e−βm |n |. (68)

Using (45), (55), (56), (67), and (68), the numerator of (66), for
y > 0, can be rewritten as

∫ ∞

−∞
xfY |X(y|x)fX(x)dx (69)

=
∫ ∞

−∞
xfN(y − x)fX(x)dx (70)

=
1∑

m=0

pm

∫ ∞

−∞
xfN ,m (y − x)fX(x)dx (71)

= I1(y) + I2(y) + I3(y), (72)

where

I1(y) =
1∑

m=0

pm
αβm

4
e−βm y

∫ 0

−∞
xe(α+βm )xdx, (73)

I2(y) =
1∑

m=0

pm
αβm

4
e−βm y

∫ y

0
xe(−α+βm )xdx, (74)

I3(y) =
1∑

m=0

pm
αβm

4
eβm y

∫ ∞

y

xe(−α−βm )xdx. (75)

The three integrals (73), (74), and (75), can be solved using

∫
xeaxdx =

{
1
a2 [(ax − 1)eax ] + C, if a �= 0,
1
2 x2 + C, if a = 0,

(76)
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where C is an arbitrary constant. If we assume that α �= βm , for
m = 0, 1, then (73)–(75) become

I1(y) = −
1∑

m=0

pm
αβm e−βm y

4(α + βm )2 , (77)

I2(y) =
1∑

m=0

pm
αβm{[(βm − α)y − 1]e−αy + e−βm y}

4(βm − α)2 ,

(78)

I3(y) =
1∑

m=0

pm
αβm [(α + βm )y + 1]e−αy

4(α + βm )2 . (79)

Hence, the numerator of (66), for y > 0, is equal to

I1(y) + I2(y) + I3(y) = (80)

=
1∑

m=0

pm

[
C1,m (e−βm y − e−αy ) − C2,m βm ye−αy

]
, (81)

where C1,m and C2,m are expressed by (58). If we repeat the
same procedure for y < 0, we obtain a similar equation.

On the other hand, using (45), (55), (67) and (68), the denom-
inator of (66) is equal to

fY(y) = fX(y) ∗ fN(y) = fX(y) ∗
1∑

m=0

pm fN ,m (y) (82)

=
1∑

m=0

pm [fX(y) ∗ fN ,m (y)] =
1∑

m=0

pm fY ,m (y), (83)

where ∗ denotes convolution and

fY ,m (y) = fX(y) ∗ fN ,m (y). (84)

By denoting with CX(u) the characteristic function associated
with the pdf fX(x), (84) translates into

CY ,m (u) = CX(u)CN ,m (u) =
α2

α2 + 4π2u2

β2
m

β2
m + 4π2u2 .

(85)
If we assume that α �= βm , for m = 0, 1, then (85) can be de-
composed in partial fractions as

CY ,m (u) =
β2

m

β2
m − α2

α2

α2 + 4π2u2 +
α2

α2 − β2
m

β2
m

β2
m + 4π2u2

(86)

=
β2

m

β2
m − α2 CX(u) +

α2

α2 − β2
m

CN ,m (u), (87)

which, by means of (82) and (83), leads to

fY ,m (y) =
β2

m

β2
m − α2 fX(y) +

α2

α2 − β2
m

fN ,m (y), (88)

fY(y) =
1∑

m=0

pm

[
β2

m

β2
m − α2 fX(y) +

α2

α2 − β2
m

fN ,m (y)
]

.

(89)

Therefore, by (89), (55), (56), and (67), the denominator of (66)
is equal to

fY(y) =
1∑

m=0

pm
αβ2

m e−α |y |

2(β2
m − α2)

+
1∑

m=0

pm
α2βm e−βm |y |

2(α2 − β2
m )

(90)

=
1∑

m=0

pm C2,m

(
αe−βm |y | − βm e−α |y |

)
, (91)

where C2,m is expressed by (58). By inserting (69)–(72), (81),
and (90)–(91) into (66), we obtain the mathematical expression
of gMMSE(y) for y > 0, and, by repeating the same procedure for
negative values of y, we obtain the final expression of gMMSE(y)
reported in (57)–(58), which is valid for all values of y. Note
that, since the signal pdf and the noise pdf are both symmetric,
the MMSE estimator is and odd function of y, and therefore
gMMSE(−y) = −gMMSE(y).

APPENDIX C
DERIVATION OF (59) AND (60)

Herein we detail the computation of D(y) in (59) and of
FY(y) in (60): these two quantities are derived by calculating
(47) and (52), respectively, for the additive noise model (45),
when the signal pdf is expressed by (55) and the noise pdf is
expressed by (56). Indeed, (47) and (52) are necessary in order to
compute the Q-MMSE estimator, expressed by (41), via (46)–
(47) and (51)–(53). The derivations of D(y) and FY(y) are
performed only for y > 0 (those for y < 0 are similar).

By (67) and (68), the noise cdf can be expressed as

FN(n) =
1∑

m=0

pm FN ,m (n) (92)

FN ,m (n) =

{
1
2 eβm n , if n < 0,

1 − 1
2 e−βm n , if n ≥ 0,

(93)

and therefore, by (55), D(y) in (47) becomes

D(y) =
1∑

m=0

pm

∫ ∞

−∞
xfX(x)FN ,m (y − x)dx (94)

= I4(y) + I5(y) + I6(y) + I7(y) + I8(y), (95)

where

I4(y) =
1∑

m=0

pm
α

2

∫ 0

−∞
xeαxdx, (96)

I5(y) = −
1∑

m=0

pm
α

4
e−βm y

∫ 0

−∞
xe(α+βm )xdx, (97)

I6(y) =
1∑

m=0

pm
α

2

∫ y

0
xe−αxdx, (98)

I7(y) = −
1∑

m=0

pm
α

4
e−βm y

∫ y

0
xe(−α+βm )xdx, (99)
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I8(y) =
1∑

m=0

pm
α

4
eβm y

∫ ∞

y

xe−(α+βm )xdx. (100)

By assuming α �= βm , for m = 0, 1, and by solving the five
integrals in (96)–(100) using (76), it is easy to show that D(y)
in (94) becomes equal to (59).

The cdf FY(y) can be easily calculated from (88) and (93),
which lead to

FY ,m (y) =
β2

m

β2
m − α2 FX(y) +

α2

α2 − β2
m

FN ,m (y) (101)

= 1 +
β2

m e−αy − α2e−βm y

2(α2 − β2
m )

, (102)

where we have used FX(y) = 1 − 1
2 e−αy for y > 0. Using (102)

with (82)–(83), we obtain the final expression (60).
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[26] H. Deliç and A. Hocanin, “Robust detection in DS-CDMA,” IEEE Trans.
Veh. Technol., vol. 51, no. 1, pp. 155–170, Jan. 2002.
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