IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

4193

Distributed Adaptive Learning of Graph Signals

Paolo Di Lorenzo, Member, IEEE, Paolo Banelli, Member, IEEE, Sergio Barbarossa, Fellow, IEEE,
and Stefania Sardellitti, Member, IEEE

Abstract—The aim of this paper is to propose distributed strate-
gies for adaptive learning of signals defined over graphs. Assuming
the graph signal to be bandlimited, the method enables distributed
reconstruction, with guaranteed performance in terms of mean-
square error, and tracking from a limited number of sampled ob-
servations taken from a subset of vertices. A detailed mean-square
analysis is carried out and illustrates the role played by the sam-
pling strategy on the performance of the proposed method. Finally,
some useful strategies for distributed selection of the sampling set
are provided. Several numerical results validate our theoretical
findings, and illustrate the performance of the proposed method
for distributed adaptive learning of signals defined over graphs.

Index Terms—Graph signal processing, sampling on graphs,
adaptation and learning over networks, distributed estimation.

1. INTRODUCTION

VER the last few years, there was a surge of interest in the
O development of processing tools for the analysis of sig-
nals defined over a graph, or graph signals for short, in view of
the many potential applications spanning from sensor networks,
social media, vehicular networks, big data or biological net-
works [1]-[3]. Graph signal processing (GSP) considers signals
defined over a discrete domain having a very general struc-
ture, represented by a graph, and subsumes classical discrete-
time signal processing as a very simple case. Several processing
methods for signals defined over a graph were proposed in [2],
[4]-[6], and one of the most interesting aspects is that these
analysis tools come to depend on the graph topology. A fun-
damental role in GSP is of course played by spectral analysis,
which passes through the definition of the Graph Fourier Trans-
form (GFT). Two main approaches for GFT have been proposed
in the literature, based on the projection of the signal onto the
eigenvectors of either the graph Laplacian, see, e.g., [1], [7],
[8], or of the adjacency matrix, see, e.g. [2], [9]. The first ap-
proach is more suited to handle undirected graphs and builds
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on the clustering properties of the graph Laplacian eigenvectors
and the minimization of the ¢, norm graph total variation; the
second approach applies also to directed graphs and builds on
the interpretation of the adjacency operator as a graph shift op-
erator, which paves the way for all linear shift-invariant filtering
methods for graph signals [10], [11].

One of the basic and interesting problems in GSP is the de-
velopment of a sampling theory for signals defined over graphs,
whose aim is to recover a bandlimited (or approximately ban-
dlimited) graph signal from a subset of its samples. A seminal
contribution was given in [7], later extended in [12] and, very
recently, in [9], [13], [14], [15], [16]. Several reconstruction
methods have been proposed, either iterative as in [14], [17],
or single shot, as in [9], [13], [18]. Frame-based approaches for
the reconstruction of graph signals from subsets of samples have
also been proposed in [7], [13], [14]. Furthermore, as shown in
[9], [13], dealing with graph signals, the recovery problem may
easily become ill-conditioned, depending on the location of the
samples. Thus, for any given number of samples, the sampling
set plays a fundamental role in the conditioning of the recovery
problem. This makes crucial to search for strategies that opti-
mize the selection of the sampling set over the graph. The theory
developed in the last years for GSP was then applied to solve
specific learning tasks, such as semi-supervised classification on
graphs [19], graph dictionary learning [20], smooth graph sig-
nal recovery from random samples [21]-[24], inpainting [25],
denoising [26], and adaptive estimation [27].

Almost all previous art considers centralized processing
methods for graph signals. In many practical systems, data are
collected in a distributed network, and sharing local information
with a central processor is either unfeasible or not efficient,
owing to the large size of the network and volume of data, time-
varying network topology, bandwidth/energy constraints, and/or
privacy issues. Centralized processing also calls for sufficient
resources to transmit the data back and forth between the nodes
and the fusion center, which limits the autonomy of the network,
and may raise robustness concerns as well, since the central
processor represents a bottleneck and an isolate point of failure.
In addition, a centralized solution may limit the ability of the
nodes to adapt in real-time to time-varying scenarios. Motivated
by these observations, in this paper we focus on distributed
techniques for graph signal processing. Some distributed meth-
ods were recently proposed in the literature, see, e.g. [28]-[30].
In [28], a distributed algorithm for graph signal inpainting is
proposed; the work in [29] considers distributed processing
of graph signals exploiting graph spectral dictionaries; finally,
reference [30] proposes a distributed tracking method for

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



4194

time-varying bandlimited graph signals, assuming perfect
observations (i.e., there is no measurement noise) and a fixed
sampling strategy.

Contributions of the paper: In this work, we propose dis-
tributed strategies for adaptive learning of graph signals. The
main contributions are listed in the sequel.

1) We formulate the problem of distributed learning of graph
signals exploiting a probabilistic sampling scheme over
the graph;

2) We provide necessary and sufficient conditions for adap-
tive reconstruction of the signal from the graph samples;

3) We apply diffusion adaptation methods to solve the prob-
lem of learning graph signals in a distributed manner. The
resulting algorithm is a generalization of diffusion adap-
tation strategies where nodes sample data from the graph
with some given probability.

4) We provide a detailed mean square analysis that illus-
trates the role of the probabilistic sampling strategy on
the performance of the proposed algorithm.

5) We design useful strategies for the distributed selection
of the (expected) sampling set. To the best of our knowl-
edge, this is the first strategy available in the literature for
distributed selection of graph signal’s samples.

The work merges, for the first time in the literature, the well
established field of adaptation and learning over networks, see,
e.g., [31]-[39], with the emerging area of signal processing on
graphs, see, e.g., [1]-[3]. The proposed method exploits the
graph structure that describes the observed signal and, under
a bandlimited assumption, enables adaptive reconstruction and
tracking from a limited number of observations taken over a sub-
set of vertices in a totally distributed fashion. Interestingly, the
graph topology plays an important role both in the processing
and communication aspects of the algorithm. A detailed mean-
square analysis illustrates the role of the sampling strategy on
the reconstruction capability, stability, and performance of the
proposed algorithm. Thus, based on these results, we also pro-
pose a distributed method to select the set of sampling nodes in
an efficient manner. An interesting feature of our proposed strat-
egy is that this subset is allowed to vary over time, provided that
the expected sampling set satisfies specific conditions enabling
signal reconstruction. We expect that the proposed tools will
represent a key technology for the distributed proactive sensing
of cyber physical systems, where an effective control mecha-
nism requires the availability of data-driven sampling strategies
able to monitor the overall system by only checking a limited
number of nodes.

The paper is organized as follows. In Section II, we intro-
duce some basic GSP tools. Section III introduces the proposed
distributed algorithm for adaptive learning of graph signals,
illustrating also the conditions enabling signal reconstruction
from a subset of samples. In Section IV we carry out a de-
tailed mean-square analysis, whereas Section V is devoted to
the development of useful strategies enabling the selection of
the sampling set in a totally distributed fashion. Then, in Section
VI we report several numerical simulations, aimed at assess-
ing the validity of the theoretical analysis and the performance
of the proposed algorithm. Finally, Section VII draws some
conclusions.
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II. GRAPH SIGNAL PROCESSING TOOLS

In this section, we introduce some useful concepts from GSP
that will be exploited along the paper. Let us consider a graph
G = (V, &) composed of N nodes V = {1, 2, ..., N}, along with
a set of weighted edges € = {a;;}; jey, such that a;; > 0, if
there is a link from node j to node 4, or a;; = 0, otherwise. The
adjacency matrix A = {a;;};_, € R"*" is the collection of
all the weights a;;,4,7 = 1,..., N. The degree of node 7 is
ki = 25\:1 a;;, and the degree matrix K is a diagonal matrix
having the node degrees on its diagonal. The Laplacian ma-
trix is defined as: L = K — A. If the graph is undirected, the
Laplacian matrix is symmetric and positive semi-definite, and
admits the eigendecomposition L = UAU, where U collects
all the eigenvectors of L in its columns, whereas A contains the
eigenvalues of L. It is well known from spectral graph theory
[40] that the eigenvectors of L are well suited for representing
clusters, since they are signal vectors that minimize the ¢5-norm
graph total variation.

A signal x over a graph G is defined as a mapping from
the vertex set to the set of complex numbers, i.e.x : )V — C. In
many applications, the signal « admits a compact representation,
i.e., it can be expressed as:

x =Us (D

where s is exactly (or approximately) sparse. As an example, in
all cases where the graph signal exhibits clustering features, i.e.
it is a smooth function within each cluster, but it is allowed to
vary arbitrarily from one cluster to the other, the representation
in (1) is compact, i.e., s is sparse. A key example is cluster anal-
ysis in semi-supervised learning, where a constant signal (label)
is associated to each cluster [41]. The GFT s of a signal x is
defined as the projection onto the orthogonal set of eigenvectors
of the Laplacian [1], i.e.,

s=Ulg. ()

The GFT has been defined in alternative ways, see, e.g., [1], [2],
[8], [9]. In this paper, we basically follow the approach based
on the Laplacian matrix, assuming an undirected graph struc-
ture, but the theory could be extended to handle directed graphs
considering, e.g., a graph Fourier basis as proposed in [2]. Also,
we denote the support of s in (1) as F={ie {1,...,N}:
s; # 0}, and the bandwidth of the graph signal x is defined
as the cardinality of F, i.e. |F|. Clearly, combining (1) with
(2), if the signal x exhibits a clustering behavior, in the sense
specified above, the GFT is the way to recover the sparse vec-
tor s. Finally, given a subset of vertices S C V, we define a
vertex-limiting operator as the matrix

DS == diag{ls}, (3)

where 1 is the set indicator vector, whose ¢-th entry is equal to
one, if 7 € S, or zero otherwise.

III. DISTRIBUTED LEARNING OF GRAPH SIGNALS

We consider the problem of learning a (possibly time-varying)
graph signal from observations taken from a subset of vertices
of the graph. The problem fits well, e.g., to a wireless sen-
sor network (WSN) scenario, where the nodes are observing a
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spatial field related to some physical parameter of interest. Let
us assume that the field is either fixed or slowly varying over
both the time domain and the vertex (space) domain. Suppose
now that the WSN is equipped with nodes that, at every time
instant, can decide wether to take (noisy) observations of the
underlying signal or not, depending on, e.g., energy constraints,
failures, limited memory and/or processing capabilities, etc. Our
purpose is to build adaptive techniques that allow the recovery
of the field values at each node, pursued using recursive and
distributed techniques as new data arrive. In this way, the infor-
mation is processed on the fly by all nodes and the data diffuse
across the network by means of a real-time sharing mechanism.

Let us consider a signal z° = {z¢}¥ | € CV defined over
the graph G = (V, £). To enable sampling of «° without loss of
information, the following is assumed:

Assumption I (Bandlimited): The signal =z° 1is F-
bandlimited on the (time-invariant) graph G, i.e., its spectral
content is different from zero only on the set of indices 7. W

Under Assumption 1, if the support F is known beforehand,
from (1), the graph signal ° can be cast in compact form as:

x® =Ugrs’, 4)

o

where Uz € CV*71 collects the subset of columns of matrix U
in (1) associated to the frequency indices F, and s® € CV1*!
is the vector of GFT coefficients of the frequency support of
the graph signal x°. Let us assume that streaming and noisy
observations of the graph signal are sampled over a (possibly
time-varying) subset of vertices. In such a case, the observation
taken by node 7 at time n can be expressed as:

yiln] = di[n] (&7 + vi[n]) = di[n] (¢ s° + vi[n]), (5

i=1,...,N, where denotes complex conjugate-
transposition; d;[n] = {0,1} is a random sampling binary
coefficient, which is equal to 1 if node i is taking the observation
at time n, and 0 otherwise; v;[n] is zero-mean, spatially and
temporally independent observation noise, with variance o?;
also, in (5) we have used (4), where ¢/’ € C'*I71 denotes the
1-th row of matrix U £. In the sequel, we assume that each node
1 has local knowledge of its corresponding regression vector c;
in (5). This is a reasonable assumption even in the distributed
scenario considered in this paper. For example, if neighbors in
the processing graph can communicate with each other, either
directly or via multi-hop routes, there exist many techniques
that enable the distributed computation of eigenparameters of
matrices describing sparse topologies such as the Laplacian
or the adjacency, see, e.g., [42]-[44]. The methods are mainly
based on the iterative application of distributed power iteration
and consensus methods in order to iteratively compute the
desired eigenparameters of the Laplacian (or adjacency) matrix,
see, e.g., [44] for details. Since we consider graph signals with
time-invariant topology, such procedures can be implemented
offline during an initialization phase of the network to compute
the required regression vectors in a totally distributed fashion.
In the case of time-varying graphs, the distributed procedure
should be adapted over time, but might result unpractical for
large dynamic networks.

The distributed learning task consists in recovering the graph
signal ° from the noisy, streaming, and partial observations

H
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y;[n] in (5) by means of in-network adaptive processing. Fol-
lowing a least mean squares (LMS) estimation approach [31],
[34]-[36], [45], the task can be cast as the cooperative solution
of the following optimization problem:

2

) (6)

msin Z Eqy ‘di (] (yi[n] — /' s)

where EE 4 ,(+) denotes the expectation operator evaluated over
the random variables {d;[n]}}¥; and {v;[n]}},, and we have
exploited d;[n]? = d;[n] for all i,n. In the rest of the paper,
to avoid overcrowded symbols, we will drop the subscripts in
the expectation symbol referring to the random variables. In
the sequel, we first analyze the conditions that enable signal
recovery from a subset of samples. Then, we introduce adaptive
strategies specifically tailored for the distributed reconstruction

of graph signals from a limited number of samples.

A. Conditions for Adaptive Reconstruction of Graph Signals

In this section, we give a necessary and sufficient condition
guaranteeing signal reconstruction from its samples. In particu-
lar, assuming the random sampling and observations processes
d[n] = {d;[n]}¥; and y[n] = {y;[n]}}", to be stationary, the
solution of problem (6) is given by the vector s° that satisfies
the normal equations:

(ZE{di [n]}CinH) s’ = ZE{dz‘ [n]yi[nl}ei. (D)

Letting p; = E{d;[n]}, i =1,..., N, be the probability that
node 7 takes an observation at time n, from (7), it is clear that
reconstruction of s° is possible only if the matrix

N
Zpicicfl = Ug PU,x )
i=1

isinvertible, with P = diag(py, . . ., pyv ) denoting a vertex sam-
pling operator as (3), but weighted by the sampling probabilities
{p:i}),. Let us denote the expected sampling set by

S={i=1,...,N|p; >0}

S represents the set of nodes of the graph that collect data with
a probability different from zero. From (7) and (8), a necessary
condition enabling reconstruction is

IS| > |7, ©)

i.e., the number of nodes in the expected sampling set must
be greater than equal to the signal bandwidth. However, this
condition is not sufficient, because matrix Ug PU£ in (8) may
loose rank, or easily become ill-conditioned, depending on the
graph topology and sampling strategy (defined by S and P).
To provide a condition for signal reconstruction, we proceed
similarly to [13], [16], [27]. Since p; > 0 for all i € S,

N
rank(i pq;cicf[) = rank E cicfl ,
i=1

i€S
i.e., matrix (8) is invertible if matrix y_, s ¢;c/f = uZ DU
has full rank, where D5 is the vertex-limiting operator that

(10)
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projects onto the expected sampling set S. Let us now introduce
the operator

D; =1-Dg, 1rn

which projects onto the complement of the expected sampling
set, i.e.,, S. ={i=1,...,N|p; = 0}. Then, exploiting (11),
signal reconstruction is possible if

UYDgUs =1-U}Dj Ur
is invertible, i.e., if condition
D5 U], <1 (12)

holds true. As shown in [13], [16], condition (12) is related to the
localization properties of graph signals: It implies that there are
no F-bandlimited signals that are perfectly localized over the set
S.. Proceeding as in [13], [27], it is easy to show that condition
(12) is necessary and sufficient for signal reconstruction. We
remark that, differently from previous works on sampling of
graph signals, see, e.g., [7], [9], [12]-[16], condition (12) now
depends on the expected sampling set. This relaxed condition is
due to the iterative nature of the adaptive learning mechanism
considered in this paper. As a consequence, the algorithm does
not need to collect all the data necessary to reconstruct one-shot
the graph signal at each iteration, but can learn acquiring the
needed information over time. The only important thing required
by condition (12) is that a sufficiently large number of nodes
collect data in expectation (i.e., belong to the expected sampling
set S). In the sequel, we introduce the proposed distributed
algorithm.

B. Adaptive Distributed Strategies

In principle, the solution s° of problem (6) can be computed as
the vector that satisfies the linear system in (7). Nevertheless, in
many linear regression applications involving online processing
of data, the moments in (7) may be either unavailable or time-
varying, and thus impossible to update continuously. For this
reason, adaptive solutions relying on instantaneous information
are usually adopted in order to avoid the need to know the
signal statistics beforehand. Furthermore, the solution of (7)
would require to collect all the data {y;[n]}.q,[n)—1. for all n,
in a single processing unit that performs the computation. In
this paper, our emphasis is on distributed, adaptive solutions,
where the nodes perform the reconstruction task via online in-
network processing only exchanging data between neighbors.
To this aim, diffusion techniques were proposed and studied in
literature [31]—[33], [46], [47]. In view of their robustness and
adaptation properties, diffusion networks have been applied to
solve a variety of learning tasks, such as, e.g., resource allocation
problems [48], distributed optimization and learning [34], sparse
distributed estimation [35], [45], [49], robust system modeling
[50], and multi-task networks [37]-[39].

In the sequel, we provide an alternative approach to derive
diffusion adaptation strategies with respect to the seminal pa-
pers [31], [32]. The derivations will be instrumental to introduce
the main assumptions that will be exploited in the mean-square
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analysis, which will be carried out in the next section. In par-
ticular, to ensure the diffusion of information over the entire
network, the following is assumed:

Assumption 2 (Topology): The communication graph is
symmetric and connected, i.e., there exists an undirected path
connecting any two vertices of the network. |

To derive distributed solution methods for problem (6), let
us introduce local copies {s;} ; of the global variable s, and
recast problem (6) in the following equivalent form:

mm Z E |d

subjectto  s; = s;

| —cl's)| (13)

foralls,7 =1,...,N.

Under Assumption 2, itis possible to write the constraints in (13)
in a compact manner, introducing the disagreement constraint
that enforces consensus among the local variables {s; }1¥; [51].
To this aim, let us denote with A = {g; ; } the adjacency matrix
of the communication graph among the nodes, such thata;; > 0,
if there is a communication link from node j to node 4, or
a;; = 0, otherwise. Then, under Assumption 2, problem (13)
[and (6)] can be rewritten in the following equivalent form:

{;:mzn] ZJ\; E |di[n] (yi[n] — ¢! s;)[* (14)
- 1 N N
subject to SO aills; - sill* <o.
=5
The Lagrangian for problem (151) writes as:
£} ) = i B ] (] — ' s,)
PSS s sl a9)

i=1 j=1

with A° > 0 denoting the (optimal) Lagrange multiplier associ-
ated with the disagreement constraint. At this stage, we do not
need to worry about the selection of the Lagrange multiplier
A%, because it will be embedded into a set of coefficients that
the designer can choose. Then, we proceed by minimizing the
Lagrangian function in (15) by means of a steepest descent pro-
cedure. Thus, letting s;[n] be the instantaneous estimate of s°
at node i, we obtain:!

siln+1) = siln] — i [V, £ ({siln]}Y 1, )]
= [ }*"NZE{d Cz y?[ ] CFSZ[TL])}
X S (s [n] — si[n)) (16)

j=1
foralli =1,..., N, where [V(-)]* denotes the complex gradi-

ent operator, and ; > 0 are (sufficiently small) step-size coef-
ficients. Now, using similar arguments as in [31], [34]-[36], we

!'A factor of 2 multiplies (16) when the data are real. This factor was absorbed
into the step-sizes f; in (16).



DI LORENZO et al.: DISTRIBUTED ADAPTIVE LEARNING OF GRAPH SIGNALS

can accomplish the update (16) in two steps by generating an
intermediate estimate ¥, [n] as follows:

ilnl = sifn) + i E {dlale (ula] - el sifa)} (17)
st = ]+ X Y (] e 09

where in (18) we have replaced the variables {s;[n]};, with
the intermediate estimates that are available at the nodes at time
n, namely, {1;[n]}; ,. Such kind of substitutions are typically
used to derive adaptive diffusion implementations, see, e.g.,
[31]. Now, from (18), introducing the coefficients

N
Wi; = 1-— qu>\0 ZEU, and Wi; = Mi)\oaij for ¢ 7£ j, (19)
j=1

we obtain

N
siln+1] = Zwij't/;]- [n] (20)
j=1
where the coefficients {wu} are real, non-negative, weights
matching the communication graph and satisfying:

w;j =0 forj ¢ N;, and W1 =1, (21)

where W € RV is the matrix with individual entries {w;; },
and N; = {j =1,...,N|a;; > 0} (J{i}isthe extended neigh-
borhood of node 7, which comprises node i itself. Recursion
(17) requires knowledge of the moments E{d; [n]y;[n]}, which
may be either unavailable or time-varying. An adaptive im-
plementation can be obtained by replacing these moments by
local instantaneous approximations, say, of the LMS type, i.e.
E{d;[n]y;[n]} =~ d;[n]y;[n], for all i, n. The resulting algorithm
is reported in Table 1, and will be termed as the Adapt-Then-
Combine (ATC) diffusion strategy. The first step in (22) is an
adaptation step, where the intermediate estimate ), [n] is up-
dated adopting the current observation taken by node i, i.e.
y;[n]. The second step is a diffusion step where the intermediate
estimates ); [n], from the spatial neighbors j € A, are com-
bined through the weighting coefficients {w;; }. Finally, given
the estimate s;[n] of the GFT at node ¢ and time n, the last
step produces the estimate x;[n + 1] of the graph signal value
at node ¢ [cf. (5)]. We remark that by reversing the steps (17)
and (18) to implement (16), we would arrive at a similar but
alternative strategy, known as the Combine-then-Adapt (CTA)
diffusion strategy. We continue our discussion by focusing on
the ATC algorithm in (22); similar analysis applies to CTA [31].

Remark 1: The strategy (22) allows each node in the net-
work to estimate and track the (possibly time-varying) GFT of
the graph signal x°. From (22), it is interesting to notice that,
while sampling nodes (i.e., those such that d;[n] = 1) take and
process the observations y; [n] of the graph signal, the role of the
other nodes (i.e., those such that d;[n] = 0) is only to allow the
propagation of information coming from neighbors through a
diffusion mechanism that percolates over all the network. From
a complexity point of view, at every iteration n, the strategy
in (22) requires that a node 7 performs O(3|F|) computations,
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Table 1: ATC diffusion for graph signal learning.

Data: s;[0] chosen at random for all 4; {w;; }; ; satisfying
(21); (sufficiently small) step-sizes p; > 0. Then, for each
time n > 0 and for each node i, repeat:

Y;[n] = si[n] + pid;[n]c; (yi[n] — ¢/ si[n])

(adaptation step)

sn+1]= 3w,

JEN;

(diffusion step)  (22)

zin+1] = sin+1]

(reconstruction step)

if d;[n] = 1, and O(2|F|) computations, if d;[n] = 0. Instead,
from a communication point of view, each node in the network
must transmit to its neighbors a vector composed of || (com-
plex) values at every iteration n.

In this work, we assume that processing and communication
graphs have in general distinct topologies. We remark that both
graphs play an important role in the proposed distributed pro-
cessing strategy (22). First, the processing graph determines the
structure of the regression data ¢; used in the adaptation step
of (22). In fact, {cf{ }; are the rows of the matrix Uz, whose
columns are the eigenvectors of the Laplacian matrix associated
with the set of support frequencies F. Then, the topology of
the communication graph determines how the processed infor-
mation is spread all over the network through the diffusion step
in (22). This illustrates how, when reconstructing graph signals
in a distributed manner, we have to take into account both the
processing and communication aspects of the problem. |

In the next section, we analyze the mean-square behavior
of the proposed method, enlightening the role played by the
sampling strategy on the final performance.

IV. MEAN-SQUARE PERFORMANCE ANALYSIS

In this section, we analyze the performance of the ATC strat-
egy in (22) in terms of its mean-square behavior. We remark
that the analysis carried out in this section differs from clas-
sical derivations used for diffusion adaptation algorithms, see,
e.g., [36]. First of all, the observation model in (5) is different
from classical models generally adopted in the adaptive filtering
literature, see, e.g. [52]. Also, due to the sampling operation
and the presence of deterministic regressors [cf. (5)], each node
cannot reconstruct the signal using only its own data (i.e., using
stand-alone LMS adaptation), and must necessarily cooperate
with other nodes in order to exploit information coming from
other parts of the network. These issues require the develop-
ment of a dedicated (non-trivial) analysis (see, e.g., Theorem
1 and the Appendix) to prove the mean-square stability of the
proposed algorithm.

From now on, we view the estimates s;[n] as realizations
of a random process and analyze the performance of the ATC
diffusion algorithm in terms of its mean-square behavior. To do
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so, we introduce the error quantities

e;[n] =sin]—s° i=1,...,N,
and the network vector
e[n] = col{ei[n],...,ex[n]}. (23)
We also introduce the block diagonal matrix
M = diag{p Lz, ..., un 17}, (24)
the extended block weighting matrix
W=Wals, (25)

where ® denotes the Kronecker product operation, and the ex-
tended sampling operator

D(n] = diag {di [n]L 7. .., dn[n]L ;5 } . (26)

We further introduce the block quantities:
Q:diag{clc{[,...,ch%}, 27)
g[n] = col{civi[n],...,exvvn[n]}. (28)

Then, exploiting (23)—(28), we conclude from (22) that the fol-
lowing relation holds for the error vector:

e[n + 1] = W(I — MD[n]Q)e[n] + WMDIn]g[n]. (29)

This relation tells us how the network error vector evolves over
time. As we can notice from (29), the sampling strategy affects
the recursion in two ways: (a) it modifies the iteration matrix
\/7\\/'(1 — MD[n]Q) of the error; (b) it selects the noise contribu-
tion D[n]g[n] only from a subset of nodes at time . Relation
(29) will be the launching point for the mean-square analysis
carried out in the sequel. Before moving forward, we introduce
an independence assumption on the sampling strategy, and a
small step-sizes assumption.

Assumption 3 (Independent sampling): The sampling pro-
cess {d;[t]} is temporally and spatially independent, for all
i1=1,...,Nandt < n. |

Assumption 4 (Small step-sizes): The step-sizes {u;} are
sufficiently small so that terms that depend on higher-order
powers of {y; } can be neglected. n

‘We now proceed by illustrating the mean-square stability and
steady-state performance of the algorithm in (22).

A. Mean-Square Stability

We now examine the behavior of the mean-square deviation
E||e;[n]||? for any of the nodes in the graph. Following energy
conservation arguments [31], [36], we can establish the follow-
ing variance relation:

Eleln+1][% = Elle[n][l3
4 E{g[n]"Dn]MW SWMD[nlg[n]}  (30)

where X is any Hermitian nonnegative-definite matrix that we
are free to choose, and

s — E(I - QD[n]M)W' SW(I - MD[n]Q). (1)
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Moreover, setting
G =E [g[n]g[n]"] = diag {oTeic’, ... ;o eney }, (32)
we can rewrite (30) in the form
2 2 NP Wl
E|e[n + 1]||5 = El|le[n]|5 + Te(EWMPGMW ) (33)
where Tr(+) denotes the trace operator,
P=E{Dn)}=Paly,

and we have exploited the relation [cf. (26), (32), and
Assumption 3]

E{D[ng[n]g[n] D[n]} = E{D[nlg[nlg[n]" } = PG.

Let o = vec(X) and o' = vec(X'), where the vec(+) notation
stacks the columns of X on top of each other and vec™!(-) is
the inverse operation. We will use interchangeably the notation
le||2 and ||e||3, to denote the same quantity e” Se. Using the
Kronecker product property vec(AXC) = (CT @ A)vec(X),
we can vectorize both sides of (31) and conclude that (31) can be
replaced by the simpler linear vector relation: o/ = vec(X') =
Ho, where H is the N2|F|? x N?|F|* matrix:

H=E{(I- Q"D[M)W @ (I- QD)MW }
—(IeDI-10QPM - Q'PM &I
+E{Q"Dn]M ® QD[n]M}H (W' @ WT). (34)

The last term in (34) can be computed in closed form. In par-
ticy\lar, from (24), (2/\6), and (27), it is easy to see how the term
QD|[n]M (and Q" D[n]M) in (34) has a block diagonal struc-
ture, which can be recast as:

N
QDM =" p;d; [n]C;, (35)
i=1

where C; = R; ® ¢;cf, and R; = diag(r;), with 7; denoting
the i-th canonical vector. Thus, exploiting (35), we obtain

E{Q"D[n]M © QD[n]M}

N N
2
= Z Z ,uiujml(-ﬁj)CiT ® C; (36)
i=1j=1
where, exploiting Assumption 3, we have
(2) Dis it = j;
m;; = E{d;[n]d;[n]} = o (37)
- / pipj, if i # 7.
Substituting (36) in (34), we obtain the final expression:
H = (I®I)(I—I®Qf’M—QTf’M®I
N N
+ 33 ppmF cl @ Cj) (WX owT). (38)

i=1 j=1
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Now, using the property Tr(EX) = vec(X? )T o, we can
rewrite (33) as follows:

Ellefn + 1|2 = E|len]|2, + vec( WMPGMW )T &
(39
The following theorem guarantees the asymptotic mean-square
stability (i.e., stability in the mean and mean-square sense) of
the diffusion strategy (22).

Theorem 1 (Mean-square stability) Assume model (5), con-
dition (12), Assumptions 2, 3, and 4 hold. Then, for any initial
condition and choice of the matrices W satisfying (21) and
17"W = 17, the algorithm (22) is mean-square stable.

o~ T
Proof: Let r = vec(WMPGMW ). From (39), we get

n—1
E|le[n][5 = Elle[0]|f o +7" > H'e
=0

(40)

where E||e[0]||? is the initial condition. We first note that if H
is stable, H" — 0 as n — oc. In this way, the first term on
the RHS of (40) vanishes asymptotically. At the same time, the
convergence of the second term on the RHS of (40) depends only
on the geometric series of matrices _,° H!, which is known to
be convergent to a finite value if the matrix H is a stable matrix
[53]. Thus, the stability of matrix H is a sufficient condition for
the convergence of the mean-square recursion E||e[n]||2. in (40)
to a steady-state value.

To verify the stability of H, we use the following approxi-
mation, which is accurate under Assumption 4, see, e.g., [31],
[34], [35]. Then, we approximate (34) as:2

H~ IoD)(I-10QPM - Q"PM®I
+Q"PM e QPM)(W o WT) = BT @ B  (41)
with B given by

B = W(I- MPQ). (42)

Thus, from (41), exploiting the properties of the Kronecker
product, we deduce that matrix H in (34) is stable if matrix B
in (42) is also stable. Under the assumptions of Theorem 1, in
the Appendix, we provide the proof of the stability of matrix B
in (42). This concludes the proof of Theorem 1. |

Remark 2: The assumptions used in Theorem 1 are sufficient
conditions for graph signal reconstruction using the ATC dif-
fusion algorithm in (22). In particular, (12) requires that the
network collects samples from a sufficiently large number of
nodes on average, and guarantees the existence of a unique so-
lution of the normal equations in (7). Furthermore, (12) and
Assumption 4 are also instrumental to prove the stability of
matrix B in (42) [and of H in (34)] and, consequently, the
stability in the mean and mean-square sense of the diffusion
algorithm in (22) (see the Appendix). ]

2It is immediate to see that (41) can be obtained from (38) by replacing the
term E{QTD[n]M ©@ QD[n]M} with QT PM © QPM. This step coin-
cides with substituting the terms p; in (36)—(37) with p?, foralli =1,...,N.
Such approximation appears in (41) only in the term Q7 PM ® QPM =
O( ,u,fnax) and, consequently, under Assumption 4 it is assumed to produce a
negligible deviation from (38).
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Remark 3: In Theorem 1, we require the matrix W to be
doubly stochastic. Note that, from the definition of weights
{w;; } in (19), under Assumption 2, this further condition would
imply that the step-sizes p; must be chosen constant for all 4.
However, as a consequence of Theorem 1, our strategy works for
any choice of doubly stochastic matrices W, without imposing
the constraint that the step-sizes must be chosen constant for
all 7. Several possible combination rules have been proposed in
the literature, such as the Laplacian or the Metropolis-Hastings
weights, see, e.g. [31], [51], [54]. [ |

B. Steady-State Performance

Taking the limitas n — oo (assuming convergence conditions
are satisfied), we deduce from (39) that:
~_ o~ —~T
Jij[;oE\\e[n]||§I_H>a = vec( WMPGMW ). (43)
Expression (43) is a useful result: it allows us to derive sev-
eral performance metrics through the proper selection of the
free weighting parameter o (or X), as was done in [31]. For
example, the Mean-Square Deviation (MSD) for any node
i is defined as the steady-state value E|Z;[n]|%, as n — oo,
where Z;[n] = z;[n] — ¢ [n], for all i = 1,..., N, with x;[n]
defined in (22). From (22), this value can be obtained by
computing lim,, . E|[e[n]||7 , with a block weighting matrix
T, = R, ® ¢;cl’, where R; = diag(r;), with r; denoting the
i-th canonical vector. Then, from (43), the MSD at node 7 can
be obtained as:

MSD; = lim E |Z;[n]|* = lim E|e[n]|k, oe,e, (44)

~ ~ —~T
= veo(WMPGMW ) (I — H) 'vec (R, ® ¢;el) .

Finally, letting Z[n] = {Z;[n]}Y_,, from (44), the network MSD
is given by:

MSD = lim E|z[n]|?
n—0o0

— T
=vec(WMPGMW )(I-H)'q, (@45)
where g = Vec(zf\;l R; @ c;cl) = vec(Q) [cf. (27)]. In the
sequel, we will confirm the validity of these theoretical expres-
sions by comparing them with numerical results.

V. DISTRIBUTED GRAPH SAMPLING STRATEGIES

As illustrated in the previous sections, the properties of the
proposed distributed algorithm in (22) for graph signal recon-
struction strongly depend on the expected sampling set S. Thus,
building on the results obtained in Section IV, it is fundamen-
tal to devise (possibly distributed) strategies that design the set
S, with the aim of reducing the computational/memory burden
while still guaranteing provable theoretical performance. To this
purpose, in this section we propose a distributed method that it-
eratively selects vertices from the graph in order to build an
expected sampling set S that enables reconstruction with a lim-
ited number of nodes, while ensuring guaranteed performance
of the learning task.
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To select the best sampling strategy, one should optimize
some (global) performance criterion, e.g. the MSD in (45), with
respect to the expected sampling set S, or, equivalently, the
weighted vertex limiting operator P. However, the solution of
such problem would require global information about the en-
tire graph to be collected into a single processing unit. To favor
distributed implementations, we propose to consider a different
(but related) performance metric for the selection of the sam-
pling set, which comes directly from the solution of the normal
equations in (7). In particular, to allow reconstruction of the
graph signal, a good sampling strategy should select a suffi-
ciently large number of vertices < € V to favor the invertibility
of the matrix in (8). In the sequel, we assume that the probabili-
ties {p; }V., are given, either because they are known apriori or
can be estimated locally at each node. In this context, the de-
sign of the sampling probabilities {p; }Y; is an important task,
which will be tackled in a future work.

Let us then consider the general selection problem:

S* = argmax h(S) = f( b 5 ciciH> (46)
s icS 7

subjectto  |S| =M

where S is the expected sampling set; M is the given num-
ber of vertices to be selected; the weighting terms p; /(1 + o7)
take into account (possibly) heterogeneous sampling and noise
conditions at each node; and f(-) : C¥1*I¥1 = R is a func-
tion that measures the degree of invertibility of the matrix in
its argument, e.g., the (logarithm of) pseudo-determinant, as
proposed in [13], [27], [55], or the minimum eigenvalue, as
proposed in [9]. As an example, taking f(-) as the (logarithm
of) pseudo-determinant function, the solution of problem (46)
aims at selecting M rows ¢/ of matrix Uz, properly weighted
by the terms +/p; /(1 + o), such that the volume of the paral-
lelepiped built by these vectors is maximized. Thus, intuitively,
the method will tend to select vertices with: (a) large sampling
probabilities p;’s; (b) low noise variances Uf ’s; and (c) such that
their corresponding regression vectors c;’s are large in mag-
nitude and as orthogonal as possible. However, since the for-
mulation in (46) translates inevitably into a selection problem,
whose solution in general requires an exhaustive search over
all the possible combinations, the complexity of such procedure
becomes intractable also for graph signals of moderate dimen-
sions. To cope with these issues, in the sequel we will provide
an efficient, albeit sub-optimal, greedy strategy that tackles the
problem of selecting the (expected) sampling set in a distributed
fashion.

The greedy approach is described in Table 2. The simple idea
underlying the proposed approach is to iteratively add to the
sampling set those vertices of the graph that lead to the largest
increment of the performance metric i (3) in (46). In particular,
the implementation of the distributed algorithm in Table 2 pro-
ceeds as follows. Given the current instance of the (expected)
sampling set S, at Step 1, each node j ¢ S evaluates locally
the value of the objective function / (S U j) that the network

would achieve if node j was added to S. Then, in step 2, the
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Table 2: Distributed Graph Sampling Strategy.

Input Data: M, the number of sampling nodes. S = ().
Output Data: S, the expected sampling set.
Function:
while |S| < M
1) Each node j computes locally A (3 Uyj ) forall j ¢ S;
2) Distributed selection of the maximum: find

s =argmax h (Suj')
JES

3) S Su{s};

4) Diffusion of | | "
+ o5

c,+ over the network;

end

network finds the maximum among the local values computed
at the previous step. This task can be easily obtained with a
distributed iterative procedure as, e.g., a maximum consensus
algorithm [56], which is guaranteed to converge in a number of
iterations less than equal to D, with D denoting the diameter
of the network. A node j ¢ S can then understand if it is the
one that has achieved the maximum by simply comparing the
value h (S U j) computed at step 1, with the result of the dis-
tributed procedure in Step 2. The node s*, which has achieved
the maximum value at step 2, is then added to the expected
sampling set. Finally, the weighted regression vector associated
to the selected node, i.e. \/ps-/(1+ 02 )cs-, is diffused over
the network through a flooding process, which terminates in a
number of iterations less than or equal to D. This allows each
node not belonging to the sampling set to evaluate step 1 of the
algorithm at the next round. This procedure continues until the
network has added M nodes to the expected sampling set.

In principle, there is no insurance that the selection path fol-
lowed by the algorithm in Table 2 is the best one. In general, the
performance of the proposed distributed strategy will be sub-
optimal with respect to an exhaustive search procedure over all
the possible combinations. Nevertheless, selecting the function
h (S) in (46) as the logarithm of the pseudo determinant, it is
possible to prove that h (3) is a monotone sub-modular func-
tion, and that greedy selection strategies (e.g., Table 2) achieve
performance within 1 — 1/e of the optimal combinatorial solu-
tion [57], [58]. From a communication point of view, in the worst
case, the procedure in Table 2 requires that each node exchanges
MD(1 + 2|F]) scalar values to accomplish the distributed task
of sampling set selection. This procedure can be run offline
once for all during the initialization phase of the network, when
the set of sampling nodes must be decided. In the case of time-
varying scenarios, e.g. switching graph topologies, link failures,
time-varying spectral properties of the graph signal, the proce-
dure should be repeated periodically in order to cope with such
dynamicity. Of course, the procedure might result unpractical
in the case of large, rapidly time-varying graphs. In such a case,
future investigations are needed for practical and efficient im-
plementations of distributed adaptive graph sampling strategies.

In the sequel, we will illustrate numerical results assessing
the performance achieved by the proposed sampling strategies.
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Fig. 1.

Network graph, and sampling set (black nodes).

VI. NUMERICAL RESULTS

In this section, we illustrate some numerical simulations
aimed at assessing the performance of the proposed strategy
for distributed learning of signals defined over graphs. First,
we will illustrate the convergence properties of the proposed
algorithm in absence of observation noise. Second, we will con-
firm the theoretical results in (39) and (44)—(45), which quan-
tify the transient behavior and steady-state performance of the
algorithm. Third, we will illustrate how the choice of the sam-
pling strategy (see, e.g., Table 2) affects the performance of the
proposed algorithm. Fourth, we will evaluate the tracking capa-
bilities of the proposed technique, considering the presence of
stochastic processes evolving over the graph. Finally, we apply
the proposed strategy to estimate and track the spatial distribu-
tion of electromagnetic power in the context of cognitive radio
networks.

1) Convergence in the Noise-Free Case: Let us consider a
network composed of N = 20 nodes, whose topology (for both
processing and communication tasks) is depicted in Fig. 1.
We generate a graph signal from (1) having a spectral content
limited to the first five eigenvectors of the Laplacian matrix
of the graph in Fig. 1. Thus, the signal bandwidth is equal to
|F| = 5. For simplicity, we use the graph illustrated in Fig. 1
for both communication and processing tasks. To illustrate the
perfect reconstruction capabilities of the proposed method in
absence of noise, in this simulation we set v;[n] = 0 for all ¢, n
in (5). Then, in Fig. 2 we report the transient behavior of the
squared error ||Z[n]||? obtained by the ATC algorithm in (22),
where Z[n] = {x;[n] — 22}, with ;[n] defined in (22) for
all 7. In particular, we report four behaviors, each one associ-
ated to a different static sampling strategy (i.e., p; = 1 for all
i €S), with |S| equal to 3, 5, 10, and 15, respectively. The
samples are chosen according to the distributed strategy pro-
posed in Table 2, where the function f(-) is chosen to be the
logarithm of the pseudo-determinant. From now on, we will de-
note this choice as the Max-Det sampling strategy. Also, we set
p;i =1, and 02-2 = 0, for all ¢ (because nor noise nor sampling
probability play any role in the selection of the samples). An
example of graph sampling in the case |S| = 5 is given in Fig. 1,
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Fig. 2. Convergence behavior: Transient MSD in the noise-free case, consid-
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Fig. 3. Convergence behavior: Transient MSD in the noise-free case, consid-
ering random sampling. | F| = 5, |S| = 5.

where the black vertices correspond to the sampling nodes. The
step-sizes p; in (22) are chosen equal to 0.5 for all ¢; the com-
bination weights {w;;} are selected using the Metropolis rule
[54], where a;; = 1 if nodes ¢ and j are connected, and @;; = 0
otherwise. As we can notice from Fig. 2, as long as condition
(12) is satisfied (see Section III-A), the algorithm drives to zero
the error asymptotically, thus perfectly reconstructing the entire
signal from a limited number of samples in a totally distributed
manner. In particular, as expected, increasing the number of
sampling nodes, the learning rate of the algorithm improves. On
the contrary, when |S| < |F|,e.g., in the case |S| = 3, condition
(12) cannot be satisfied in any way (i.e., the signal is downsam-
pled), and the algorithm cannot reconstruct the graph signal, as
shown in Fig. 2.

To illustrate the convergence properties of the proposed strat-
egy in the presence of probabilistic sampling (i.e., 0 < p; < 1
for i € S), in Fig. 3 we report the average transient behavior
of the squared error ||Z[n]||> obtained by the ATC algorithm
in (22), considering different values of sampling probability
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Fig. 4. Mean-Square performance: Transient MSD, and theoretical steady-

state MSD, for different values of [S]. | F| = 5.

p; = p forall i € S. The signal bandwidth is equal to | F| = 5,
and the expected sampling set is composed of 5 nodes selected
according to the Max-Det sampling strategy. The results are
averaged over 100 independent simulations. The step-sizes and
the combination weights are chosen as before. As we can notice
from Fig. 3, since S satisfies condition (12), i.e., the network
collects samples from a sufficient number of nodes on average,
the algorithm drives to zero the error for any value of p. As
expected, increasing the sampling probability at each node, the
learning rate of the proposed algorithm improves.

2) Mean-Square Performance: Now, we illustrate the mean-
square behavior of the proposed strategy in the presence of ob-
servation noise in (5). As a first example, we report the transient
behavior of the network MSD obtained by the ATC algorithm
in (22), versus the iteration index, for different number of nodes
collecting samples from the network: (a) |S| = 5; (b) |S| = 15;
(c) |S| = 15. The difference between the three cases (a), (b)
and (c) is also in the observation noise. In particular, in (a) and
(b), the noise at the sampling nodes is chosen to be zero-mean,
Gaussian, with variance chosen at random between O and 0.1.
In case (c), the noise variance is chosen equal to case (a) for
the first |S| = 5 nodes belonging also to case (a), whereas it is
chosen equal to 0.4 for the remaining 10 sampling nodes. The
expected sampling set is chosen according to the Max-Det strat-
egy, and the sampling probabilities are set equal to p; = 0.8 for
all i € S. The signal bandwidth is equal to |F| = 5. The com-
bination weights are chosen as before, and the step-sizes are
selected in order to match the learning rates of the algorithm.
The curves are averaged over 200 independent simulations, and
the corresponding theoretical steady-state values in (45) are re-
ported for the sake of comparison. As we can notice from Fig. 4,
the theoretical predictions match well the simulation results.
Furthermore, we notice how, when varying the number of nodes
collecting samples, the algorithm might lead to lower or larger
steady-state errors. This illustrates that, when reconstructing a
graph signal in the presence of noise, it is not always better to
increase the number of samples, as this implies an increment
of the overall noise injected in the algorithm. In particular, the
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steady-state performance can improve or degrade by enlarging
the sampling set, depending on the distribution of noise over the
network. Intuitively, if the noise variance is almost uniform and
low at each node of the network, it is convenient to add samples
to the algorithm [as from case (a) to case (b)], which improves
its learning rate/steady-state performance tradeoff. On the con-
trary, if some nodes have very noisy observations, it might be
not convenient to take their samples (as from case (a) to case
(c)), as this might lead to a performance degradation.

As a further example aimed at validating the theoretical re-
sults in (44), in Fig. 5 we report the behavior of the theoretical
steady-state MSD values achieved at each vertex of the graph,
comparing them with simulation results, for different values of
the sampling probability p, and of the step-sizes p; = p for all
. The numerical results are obtained averaging over 200 in-
dependent simulations and 500 samples of squared error after
convergence of the algorithm. The signal bandwidth is equal to
|F| = 5, and the expected sampling set is composed of |S| = 10
nodes. We can notice from Fig. 5 how the theoretical values in
(44) predict well the simulation results. As expected, reducing
the step-size and the sampling probability, the steady-state MSD
of the algorithm improves.

Finally, in Fig. 6, we validate the theoretical expression for
the transient MSD in (39), comparing it with numerical results,
for different values of the step-sizes p; = p for all 7. The nu-
merical results are obtained averaging over 200 independent
simulations, the signal bandwidth is equal to | F| = 2, p; = 0.5
for all i € S, and |S| = 10 nodes. We can notice from Fig. 6
how the theoretical behaviors in (39) predict well the numeri-
cal results. As expected, reducing the step-size, the algorithm
becomes slower, but the steady-state MSD improves.

3) Effect of Sampling Strategy: As previously remarked, it
is fundamental to assess the performance of the algorithm in
(22) with respect to the strategy adopted to select the expected
sampling set S. Indeed, when sampling a graph signal, what
matters is not only the number of samples, but also (and most
important) where the samples are taken. From (45), we can in
fact deduce that the sampling set plays a fundamental role, since
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it affects the performance of the proposed strategy in two ways:
(a) it determines the stability of the iteration matrix B in (42),
i.e., Hin (45); (b) it allows us to select the nodes that inject noise
into the system. As a first example, we aim at illustrating the
performance obtained by the algorithm in (22) under different
noise conditions at each node in the network, thus illustrating
how selecting samples in a right manner can help reduce the
effect of noisy nodes. In particular, we adopt the Max-Det sam-
pling strategy, where the sampling probabilities are set equal to
p; = 0.8 for all i € S. The noise at each node is chosen to be
zero-mean, Gaussian, with a variance chosen uniformly random
between 0 and 0.1. The step-sizes are p; = 0.5 for all ¢, and the
combination weights are chosen as before; we also consider
the graph in Fig. 1. Then, in Fig. 7, we report the steady-state
MSD obtained by the algorithm in (22), versus |§ , for different
values of bandwidth |F| of the graph signal. The curves are
averaged over 500 independent simulations. In particular, we
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consider two variants of the sampling strategy: (a) a weighted
strategy as in Table 2, where each local element is weighted by
the variance 0? of the noise for all i (see, e.g., (46)); and (b) a
non-weighted strategy, corresponding to setting o2 = 0 for all
1, in Table 2. As we can notice from Fig. 7, the weighted strat-
egy always outperforms the non-weighted method; this happens
because the weighted strategy tends to select sampling nodes
with smaller noise variance, thus leading to better performance.
Interestingly, the gain is larger at lower bandwidths, thanks to
the larger freedom that the method has in the selection of the
(noisy) samples.

As a further example, in Fig. 8, we illustrate the steady-state
MSD of the algorithm in (22) comparing the performance ob-
tained by four different sampling strategies, namely: (a) the
Max-Det strategy (obtained setting f(-) as the logarithm of
the pseudo-determinant in Table 2); (b) the Max-\,,;, strategy
(obtained setting f(-) = Anin(-) in Table 2); (c) the random
sampling strategy, which simply picks at random |S| nodes; and
(d) the exhaustive search procedure aimed at minimizing the
MSD in (45) over all the possible sampling combinations. In
general, the latter strategy cannot be performed for large graphs
and/or in a distributed fashion, and is reported only as a bench-
mark. We consider a signal bandwidth equal to |F| = 5, the
sampling probabilities are set equal to p; = 0.8 foralli € S, and
the results are averaged over 500 independent simulations. The
step-sizes and the combination weights are chosen as before. As
we can notice from Fig. 8, the algorithm in (22) with random
sampling can perform quite poorly, especially at low number
of sampling nodes. Comparing the other sampling strategies,
we notice from Fig. 8 that the Max-Det strategy outperforms
all the others, giving good performance also at low number of
sampling nodes (|S| = 5 is the minimum number of nodes that
allows signal reconstruction). Interestingly, even if the proposed
Max-Det strategy is a greedy approach, it shows performance
that are comparable to the exhaustive search procedure, which
represents the best possible performance achievable by a sam-
pling strategy in terms of MSD. As previously mentioned, this
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Fig. 9. Tracking behavior: Graph signal estimate (dashed) and true signal
(solid) versus iteration index, for different values of sampling probability p and
graph algebraic connectivity As.

good behavior is due to the monotonicity and sub-modularity
properties of the objective function used in the Max-Det strat-
egy, which ensures that the greedy selection strategy in Table
2 achieves performance that are very close to the optimal com-
binatorial solution [57], [58]. Finally, comparing the Max-\,i,
strategy with the Max-Det strategy, we notice how the latter
leads to better performance, because it considers all the modes
of the matrix in (46), as opposed to the single mode associ-
ated to the minimum eigenvalue considered by the Max-Ay iy
strategy. This analysis suggests that an optimal design of the
sampling strategy for graph signals should take into account
processing complexity (in terms of number of sampling nodes),
prior knowledge (e.g., graph structure, noise distribution), and
achievable mean-square performance.

4) Tracking of Time-Varying Graph Signals: In this example,
we illustrate the tracking capabilities of the proposed distributed
methods in the presence of (slowly) time-varying signals evolv-
ing over the graph. To this aim, we generate a time-varying signal
such that its graph Fourier transform (with respect to the graph
in Fig. 1, having algebraic connectivity Ay = 0.85) evolves
over time as: s°[n + 1] = ¥ s°[n] + u[n], where s°[n] € R,
|F| =5, ¥ =0.99, u[n] = sin (27 f,n)1 +wn], f, = 1073,
and wn] is a zero-mean, Gaussian noise vector with identity
covariance matrix. The corresponding graph signal at time 7 is
then obtained as x°[n] = Uzs®[n]. Thus, in Fig. 9 (top), we
report the behavior of the estimate of the graph signal x;[n] in
(22), for i = 1, using a dashed line. We also report the behavior
of the true signal z¢[n], using a solid line. The expected sam-
pling set is composed of 10 nodes, and is selected according
to the Max-Det sampling strategy; the sampling probabilities
are set equal to p; = 0.5 for all i € S. In Fig. 9 (middle) we
repeat the same experiment but setting the sampling probability
of node 1 equal to p; = 0, i.e., the node never observes the sig-
nal. Finally, in Fig. 9 (bottom), we consider the case in which
the sampling probability of node 1 is equal to zero, but the
connectivity of the communication graph linking the nodes is
larger than before, having now an algebraic connectivity Ay =
1.52. The step-sizes are chosen equal to p; = 1 for all 4; the
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combination weights are selected as before. As we can notice
from Fig. 9, the algorithm shows good tracking performance in
all cases. As expected, the tracking capability is good in the case
of Fig. 9 (top), when node 1 belongs to the expected sampling
set and observes the signal for half of the time. Remarkably, also
in the cases of Fig. 9 (middle) and (bottom), even if node 1 does
not directly observe the signal at its location (i.e., p = 0), the
algorithm can still guarantee good tracking performance thanks
to the real-time diffusion of information among nodes in the
graph. Finally, comparing Fig. 9 (middle) and (bottom), we can
notice how a larger connectivity of the communication graph
boosts the tracking capabilities of the network thanks to the
faster information sharing among the nodes.

5) Application Example - Power Spatial Density Estimation
in Cognitive Networks: In this example, we apply the proposed
distributed framework to power density cartography in cognitive
radio (CR) networks. We consider a 5G scenario, where a dense
deployment of radio access points (RAPs) is envisioned to pro-
vide a service environment characterized by very low latency
and high rate access. Each RAP collects data related to the trans-
missions of primary users (PUs) at its geographical position, and
communicates with other RAPs with the aim of implementing
advanced cooperative sensing techniques. The aim of the CR
network is then to build a map of power spatial density (PSD)
transmitted by PUs, while processing the received data on the fly
and envisaging proper sampling techniques that enable a proac-
tive sensing of the environment from only a limited number of
RAP’s measurements.

Let us then consider an operating region of 200 m? where
150 RAPs are randomly deployed to produce a map of the
spatial distribution of power generated by the transmissions
of four active primary users. The PU’s emit electromagnetic
radiation with power equal to 10 mW. The propagation medium
is supposed to introduce a free-space path loss attenuation on
the PU’s transmissions. The graph among RAPs is built from a
distance based model, i.e., stations that are sufficiently close to
each other are connected through a link. In Fig. 10, we illustrate
a pictorial description of the scenario, and of the resulting graph
signal. For simplicity, we use the graph illustrated in Fig. 10
for both communication and processing tasks. We assume that
each RAP is equipped with an energy detector, which estimates
the received signal using 100 samples, considering an additive
white Gaussian noise with variance 02 = 10~*. The resulting
signal is not perfectly bandlimited, but it turns out to be smooth
over the graph, i.e., neighbor nodes observe similar values. This
implies that sampling such signals inevitably introduces aliasing
during the reconstruction process. However, even if we cannot
find a limited (lower than V) set of frequencies where the signal
is completely localized, the greatest part of the signal energy is
concentrated at low frequencies. This means that if we process
the data using a sufficient number of observations and (low)
frequencies, we should still be able to reconstruct the signal
with a satisfactory performance.

An example of PSD cartography based on the proposed diffu-
sion algorithm is shown in Fig. 11, where we simulate a dynamic
situation where the four PU’s switch between idle and active
modes in the order shown in Fig. 10 every 10? time instants.
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for different values of | F| and |S|.

In particular, in Fig. 11, we show the behavior of the transient
normalized MSD, for different values of |S| and bandwidths
used for processing. The step-size is chosen equal to 1, the
sampling probabilities are p; = 0.5 for all ¢, while the adopted
sampling strategy is the Max-Det strategy proposed in Table 2.
From Fig. 11, we can see how the proposed technique can track
time-varying scenarios. Furthermore, as expected, its steady-
state performance and learning rate improve with increase in
the number of nodes collecting samples and bandwidths used
for processing.

VII. CONCLUSIONS

In this paper, we have proposed distributed strategies for
adaptive learning of graph signals. The method hinges on the
structure of the underlying graph to process data and, under
a bandlimited assumption, enables adaptive reconstruction and
tracking from a limited number of observations taken over a
subset of vertices in a totally distributed fashion. An interesting
feature of our proposed method is that the sampling set is al-
lowed to vary over time, and the convergence properties depend
only on the expected set of sampling nodes. Furthermore, the
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graph topology plays an important role both in the processing
and communication aspect of the problem. A detailed mean
square analysis is also provided, thus illustrating the role of the
sampling strategy on the reconstruction capability, stability, and
mean-square performance of the proposed algorithm. Based on
this analysis, some useful strategies for the distributed selec-
tion of the (expected) sampling set are also provided. Finally,
several numerical results are reported to validate the theoretical
findings, and illustrate the performance of the proposed method
for distributed adaptive learning of signals defined over graphs.

This paper represents the first work that merges the well es-
tablished field of adaptation and learning over networks, and the
emerging topic of signal processing over graphs. Several inter-
esting problems are still open, e.g., distributed reconstruction
in the presence of directed and/or switching graph topologies,
online identification of the graph signal support from stream-
ing data, distributed inference of the (possibly unknown) graph
signal topology, adaptation of the sampling strategy to time-
varying scenarios, optimization of the sampling probabilities,
just to name a few. We plan to investigate on these exciting
problems in our future works.

APPENDIX
STABILITY OF MATRIX B IN (42)

Taking the expectation of both sides of (29), and exploiting
Assumption 3, we conclude that the mean-error vector evolves
according to the following dynamics:

Ee[n + 1] = W(I — MPQ)Ee[n] = BEe[n].  (47)

To prove stability of matrix B in (42) (and, consequently, the
mean stability of the algorithm in (22)), we proceed by showing
that the sequence e[n] in (47) asymptotically vanishes for any
initial condition. To this aim, let y[n] = Ee[n], and consider its
decomposition as:

yln] =ynl +y[n], (48)

where y[n| represents the average vector over all nodes, and
y[n] is a disagreement error, respectively given by:

ylnl =Jy[n] = 1@ D) gln],
g[n] = JJ_ y[n]a

(49)
(50)
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with
1 N
=< uiln] (51)
N i=1
1
J:N11T®I, and J, =1-17J. (52)

In the sequel, we will show that both y[n| (or, equivalently,
y[n]) and y[n] asymptotically converge to zero, thus proving
the convergence in the mean of the algorithm and the stability
of matrix B in (42). From (49) and (47), we obtain

gln+1] = IW(I - MPQ)y[n]
W Jyln] — IMPQy|n]
Y (1- IMPQ)gln] - IMPQ[n]  (53)

where in (a) we have used JW =17 [cf. (21), (25) and (52)];
and in (b) we have exploited (49) and (48). Similarly, from (50)

and (47), we get
yln+1] = J.W(I—-MPQ)y[n]

@ JLWJL?J[”}

5, W - MPQ)yn]

~J,WMPQuy]n]

~J WMPQ7F[n] (54)

where in (a) we have exploited the relation J LW =J LWJ n
[cf. (21), (25) and (52)]; and in (b) we have used (50) and (48).
Now, combining the recursions (53) and (54), we obtain

] =G )] o
where
Z,, = 1-JMPQ, (56)
Z, = ~JMPQ, (57)
7y, = —J, WMPQ, (58)
Zoy — I, W (I _ Mf’Q) . (59)

A necessary and sufficient condition that guarantee the conver-
gence to zero of the sequence in (55) is that matrix

Zyy Zy
Z =
(Z21 Zyy
is stable [53]. We proceed by showing that, under Assumption 4,
the eigenvalues of matrix Z in (60) are approximatively deter-

mined only by the eigenvalues of Z;; and Zys. From (60), the
characteristic polynomial of Z is given by:

p(A) =det (Z — AI)

Y det ((Zaz — MI)(Zyy — M) —

W det(Zas — M) det(Zn1 — M) 61)

where (a) holds for 2 x 2 block matrices [59, p. 4], since Z11 —
A and Z 5 commute [cf. (56) and (57)]; and (b) follows from the

(60)

Z21Z12))
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small-step size Assumption 4, as proved next. Indeed, expanding
the argument of the determinant in (61a) we obtain:

(Zoy — NI)(Zyy — A1) — Zy1 Zy5
= ZyyZn1 — ZnZyy — (Zoy + Zi)A + N1 (62)

Thus, if under Assumption 4 we have
ZoyZ0 — L2y = Loy 72y, (63)

from (62) and (61a), we can conclude that (61b) holds, i.e.,
(Zog — N)(Z11 — A1) — Zo1Z19 = (Zoo — AI)(Zqq1 — A1)
Now, from (56)—(59), we easily obtain:

ZooZyy =J, W —J, WIMPQ — J, WMPQ

+J, WMPQIMPQ (64)

Z1Z15 = J, WMPQIMPQ
ZiosZny — Zo1Zys =3 W — I WIMPQ — J, WMPQ.

It is then clear that, using Assumption 4 and thus neglecting
the term J, WMPQJIMPQ = O(yi2,,.) in (64) with respect
to the constant term and the term O(piy.y) contained in the
expression of Zy5 71, we obtain (63). As previously mentioned,
this proves that the approximation made in (61b) holds under
the small step-sizes Assumption 4.

From (61), we conclude that, for sufficiently small step-sizes,
the eigenvalues of matrix Z in (60) are approximatively given
by the eigenvalues of Z;; and Zs5 in (56) and (59), i.e. matrix
7 is stable if matrices Z; and Zs- are also stable. This means
that the iteration matrix in (55) can be considered approxima-
tively diagonal for the purpose of stability analysis. Thus, in
the sequel, we analyze the stability of the recursion in (55),
considering separately the behavior of the mean vector y[n]
and of the fluctuation y[n], under the aforementioned diagonal
approximation.

Convergence of g[n|: We now study the recursion

le ﬂ[n} .

For convenience, exploiting (49), (56), and (52), we equivalently
recast the previous recursion in terms of g[n], as:

ygn+1] =

gln +1] = (1 - % (1T @ ) MPQ(1® I)) g[n].  (65)

The recursion (65) converges to zero if the two following con-
ditions hold: (a) matrix

V=< (T e)MPQeT) = (66)

ZM[p?cl H

icS
is invertible (i.e., full rank); (b) and |1 — Ayax (V)| < 1. Pro-
ceeding as in (10)—(12), the invertibility of matrix (66) is guar-
anteed under condition (12). Then, if matrix (66) is full rank,
exploiting the inequality

Z pipiciel || < un];,ax ZPiHCiHZa
ieS €S

)\'I!laX
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condition (b) is guaranteed if the step-sizes satisfy:
2

1 2
N > pillell
which hold true under Assumption 4. Thus, under conditions
(12) and assumption 4, g[n] (and Y[n]) converges to zero for all

initial conditions, i.e., matrix Z; is stable.
Convergence of y[n|: We now study the recursion

0 < pti < fmax < , foralli e S, (67)

yln +1] = Zao y[n],
which converges to zero if Zss is stable. From (59), we have

p(Zsz) < |3 W| I - MPQ], (68)

with p(X) denoting the spectral radius of a matrix X. Under
Assumption 2, we have [cf. (25) and (52)]

N (69)
Thus, from (68) and (69), p(Zss) < 1, ie., matrix Zgs in
(59) is stable, if ||I— Mf’QH < 1, which holds true under
Assumption 4. In conclusion, matrix Z in (60) is stable, and
the sequence y[n] in (48) [i.e., Ee[n] in (47)] asymptotically
vanishes for all possible initial conditions. This proves the sta-
bility of matrix B in (42).

e 1
o] = (w- yur) e <1
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