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Abstract—In this paper, we deal with channel estimation for
orthogonal frequency-division multiplexing (OFDM) systems. The
channels are assumed to be time-varying (TV) and approximated
by a basis expansion model (BEM). Due to the time-variation, the
resulting channel matrix in the frequency domain is no longer
diagonal, but approximately banded. Based on this observation,
we propose novel channel estimators to combat both the noise and
the out-of-band interference. In addition, the effect of a receiver
window on channel estimation is also studied. Our claims are
supported by simulation results, which are obtained considering
Jakes’ channels with fairly high Doppler spreads.

Index Terms—Basis expansion model (BEM), orthogonal fre-
quency-division multiplexing (OFDM), pilot-assisted modulation,
time-varying (TV) channels.

1. INTRODUCTION

N mobile communications, high speeds of terminals and/or
I scatterers cause Doppler effects that could seriously affect
the performance. To understand this problem, we need accurate
models of the Doppler-aftected or time-varying (TV) channels,
whose channel taps vary with time. A common approach is to
describe the channel taps statistically by their Doppler spectrum,
which typically is bathtub-shaped [1], bell-shaped [2], or a com-
bination thereof. The statistics assumed in these channel models
are usually based on physical propagation parameters such as
the path delays, path phases, path frequencies, path angles of
arrival, etc. [1]. Despite their accuracy, these statistical models
are generally bulky and difficult to handle. Therefore, many ex-
isting works resort to a parsimonious channel model such as the
basis expansion model (BEM).

The BEM that is optimal in terms of the mean square
error (MSE) is the so-called discrete Karhuen—Loéve BEM
(DKL-BEM) [3]-[5], which is, in essence, a reduced-rank
decomposition of a certain type of Doppler spectrum, e.g., the
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bathtub-shaped or bell-shaped spectrum. The problem though
is that if the assumed channel statistics deviate from the true
scenario, which is very likely in practice, the DKL-BEM will
perform suboptimally. As a compromise, one can derive a BEM
that is based on a general approximation for all kinds of channel
statistics. For instance, the discrete prolate spheroidal BEM
(DPS-BEM) corresponds to the DKL-BEM with a rectangular
spectrum [6]. It is featured by a set of orthogonal spheroidal
functions that are perfectly band-limited but have maximal time
concentration within the considered interval. Note that it is also
possible to construct BEMs that are not per se dependent on the
channel statistics like the so-called complex-exponential BEM
(CE-BEM) [7]. Its basis functions are complex exponentials
that have a period equal to the length of the considered interval.
The CE-BEM gained a great deal of attention thanks to its
algebraic ease [8]-[13], but induces a larger modeling error. As
we understand, the CE-BEM can actually be viewed as a spe-
cial DKL-BEM but based on a white spectrum. An improved
modeling performance is obtained by the so-called generalized
CE-BEM (GCE-BEM) [14], which employs a set of complex
exponentials that are more closely spaced in the frequency
domain than those related to the traditional CE-BEM. Finally,
a great deal of attention goes to the polynomial BEM (P-BEM)
[15], [16], which models each tap as a linear combination of a
set of polynomials. Its modeling performance is rather sensitive
to the Doppler spread though it has a better fit for low Doppler
spreads than for high Doppler spreads. Note that it is also
possible to combine the aforementioned BEMs for different
purposes [17]-[19].

Apart from the BEM, another modeling approach is to use
a Gauss—Markov process to simulate the channel dynamics
[20]. Such a model is interesting for sequential time-domain
processing. When we deal with block transmission/precoding
schemes, such as orthogonal frequency-division multiplexing
(OFDM), it is often more convenient to use a block-based
channel model such as a BEM.

Focusing on the estimation of channels that are modeled by a
BEM, we basically only need to estimate the BEM coefficients,
which are usually smaller in number than the total number of
channel unknowns. References [8], [12], and [21] belong to
the few works that focus on blind BEM channel estimation.
References [6], [10], [15], and [22] propose pilot-assisted
channel estimators based on different BEM assumptions, where
commonly, pilots are clustered in the time domain such that
the channel estimation can be realized without interference
from neighboring data symbols. For frequency-domain com-
munication systems such as OFDM, it is not clear what is
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the “optimum” strategy to place the pilots. This is due to the
Doppler spread, which corrupts the orthogonality among the
subcarriers and induces intercarrier interference (ICI). The
receiver can find no subcarrier that solely depends on pilots
and thus is not contaminated by data symbols. For this reason,
many existing works view the frequency-domain channel
matrix either as diagonal [6], [23], [24] thus ignoring the
ICI completely, or strictly banded as in [13] that relies on a
CE-BEM assumption. Apparently, these approaches suffer
from a large estimation error for channels with a high Doppler
spread, but admit a clustered pilot scheme in the frequency
domain, which is adopted in many OFDM standards, e.g.,
terrestrial digital video broadcasting (DVB-T) [25]. A different
approach is to view the frequency-domain channel matrix as a
full matrix [17], [26], [27], which reflects the true situation, but
generally requires the pilots to occupy a whole OFDM symbol.

In this paper, we study the clustered pilot scheme in the fre-
quency domain and at the same time view the frequency-domain
channel matrix as approximately banded, which implies that we
consider yet a full channel matrix but with most of its power
concentrated around the main diagonal and degrading rapidly
from the diagonal to the margin. This view complies with the
observations made in [18] and [28] and can be represented by
most BEMs except for the CE-BEM, which results in a strictly
banded frequency-domain channel matrix. However, the band-
width of such an approximately banded channel matrix is hard
to define and if we artificially select a clear-cut bandwidth, the
out-of-band entries will give rise to interference. This paper will
show that by taking this interference wisely into account in tra-
ditional estimator designs, such as the linear minimum mean
square error (LMMSE) estimator or the best linear unbiased es-
timator (BLUE), we can improve the estimation accuracy. This
is in contrast to the least squares (LS) estimator, which requires
the interference to be as small as possible. In other words, the
amount of interference we take into account has a significant im-
pact on each estimator. This effect will be analyzed in this paper
and a criterion to select the optimal amount of interference for
different types of channel estimators will be proposed.

Recently, an increased interest has emerged in low-com-
plexity equalization of TV channels for OFDM systems, many
of which rely on the strictly banded assumption of the channel
matrix in the frequency domain [29]-[31]. Undoubtedly, for the
data model introduced in this paper, the out-of-band interfer-
ence can compromise the performance of such equalizers. [29],
[30] proposed receiver windowing to suppress this interference,
but they have not considered how this will affect the channel
estimation performance. In a nutshell, now that the channel is
reshaped by the window, both the channel estimator and the
BEM design must be adapted accordingly. To motivate the
latter briefly, it is not hard to imagine that if the channel changes
due to the windowing, the traditional BEM design needs to
be adapted also to maintain a tight fit. Notably, the CE-BEM
forms an exception and should remain unaltered irrespective of
the existence of windowing.

The rest of this paper is organized as follows. Section II
presents how a windowed TV channel can be approximated by
a proper BEM and accordingly establishes the OFDM system
model. Section III formulates the data model that we will
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apply to channel estimation. In Section IV, we propose three
channel estimators and their optimization. Simulation results
are exhibited in Section V, and we conclude the paper with
Section VI.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). (-)*, ()T, and (-)# represent conju-
gate, transpose, and complex conjugate transpose (Hermitian),
respectively. £, {-} stands for the expected value with respect to
the random variable z. ® and ® represent the Kronecker product
and the Schur—Hadamard (elementwise) product, respectively.
1 represents the pseudoinverse. We denote the N x N identity
matrix as Iy, the M x N all-zero matrix as 0p;x v, and the
M x N all-one matrix as 174 n. € stands for a unit vector
with a 1 at the (k + 1)th position. Further, we use [x],, to indi-
cate the (p + 1)th element of the vector x, [X], , to indicate the
(p+ 1, ¢+ 1)thentry of the matrix X, and diag{x} to indicate
a diagonal matrix with x as its diagonal.

II. SYSTEM MODEL

A. OFDM System Model

Let us consider an OFDM system with N subcarriers, as il-
lustrated in Fig. 1. The kth OFDM symbol s(%) is used to mod-
ulate N carriers as s)(k) = Fs(k), where F stands for
the N point unitary discrete Fourier transform (DFT) matrix
with [F], , = 1/v/Nexp(—j27pq/N). Making abstraction of
the digital-to-analog and analog-to-digital conversions, s'*) (k)
is next concatenated by a cyclic prefix, sent over the channel,
stripped from the cyclic prefix, and reshaped by a windowing
filter. The resulting data stream can then be summarized as

y® (k) = diag{w}H® (k)FHs(k) + diag(w)n® (k)

=H" (k)Fs(k) + n® (k) 4))
where w = [wo,...,w ~—_1]T represents the time-domain
window and H® (k) (29 (k)) and H® (k) (nY(k)) denote
the channel matrix (noise) in the time domain without and with
windowing, respectively. Let us now define hg)l and hg)l as
the /th channel tap at the nth time instant without and with
windowing, respectively, and let us assume that hfi)l and hg,)z
have finite order L, i.e., ES)I = 0for! < OQor! > L and

hg,)z =0forl < Oorl > L.If we then assume that the length
of the cyclic prefix L., satisfies L., > L, both I:I(t)(k‘) and
H® (k) are “pseudocirculant” with
] —7®
[H(t)(k)]l’vq - hk(N-l—ch)—l—ch—l—p,mod(p—q,]\f)
and

[H(t)(k)]P7(1 = h’;ct()N-l—Lpp)—I—Lpp—l—p,mod(p—q,]\f).

Note that by means of an appropriate window w, a banded
approximation of H® (k) = diag{w}H® (k) is more accu-
rate than the corresponding banded approximation of I:I(t)(k).
Therefore, low-complexity equalization schemes that exploit
the banded assumption of the channel matrix in the frequency
domain [29]-[31] will have an improved performance when
appropriate windowing is employed. In the sequel, we will refer
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Fig. 1. Transceiver block diagram.

to the windowed channel as “the channel,” unless otherwise
stated.

The received samples y(*) (k) are afterwards demodulated by
the DFT matrix F, resulting in

—H(k)s(k) + n(k) 2

with H(k) := FH®(E)FH (n(k) := Fn®(k)) denoting the
channel matrix (noise) in the frequency domain.

B. Windowed BEM Channel Model

In this section, we will try to accurately model
the time-domain channel hff)l by using a BEM.
Collecting the TV behavior of the Ith channel tap
within the kth OFDM symbol in the N Xx 1 ;ector

(t) o (1) (®)
h; (k) = hk(N-i—LFp)-i-LFp,l"'"h(k+1)(N+Lrp)—1,l

I we
can express hlt)(k) as

" (k) = Bhy(k) + e (k) 3)
where B := [bg,...,bg] is an N x (Q + 1) matrix that
collects ) + 1 orthonormal basis functions by as columns,
hi(k) = [ho(k),...,hqi(k)]" represents the BEM co-
efficients for the [th tap of the kth OFDM symbol, and
a(k) = [eoa(k),...,en—1,(k)]" represents the corre-
sponding BEM modeling error, which is assumed to be
minimized in the MSE sense. Stacking all the channel taps
within the kth observation block in one vector

| @) (t)
h(t)(k) = hk(N+ch)+ch,07 T hk(N-l—LEp)-i—LEp,L'/
T
h(t) h(t)
o (k+1)(N+LCp)71,07 o (k+1)(N+LCp)71,L
we obtain
h® (k) = (B @ Ip41)h(k) + e(k) 4)

where h(k) = [ho,o(k), ey ho’L(k'), ey hQ,O(k), ey hQ,L
(k)]* and e(k
GN_LL(]{J)]T. B

Denoted as B, various traditional BEM designs have been
reported to model the unwindowed TV channels, e.g., the
CE-BEM [B],, := ¢W2m™/N)(a=Q/2) [13]; the GCE-BEM
[Blpg = eW?™/EN)a=Q/2) with K > 1 [14]; the P-BEM

[Bl,., := (p + 1)9[15]; and the DKL-BEM, which employs
basis sequences that corresponds to the most significant eigen-
vectors of the autocorrelation matrix Rgf)z [5] with

p,q

[R5 = e {B0A ) )
®

where we assume that th , is identical for each channel tap [ up
to a scaling. The DPS-BEM is constructed in a similar fashion,
but based on a special f{g)l that is associated with a rectangular
Doppler spectrum [6].

The question arises as how to choose an appropriate BEM
B in case of windowing. Basically, we have the following two

options:

_1BQ i)
B= {diag{w}BQ ii). ©
In (6), we add a square matrix Q to ensure that the columns of
B are orthonormal. Its usage is in general not mandatory but
can simplify the analysis as will be clear later on. We observe
in (6) that option i) ignores the window in the BEM design and
sticks to the traditional “unwindowed” BEMs to model the win-
dowed channels whereas option ii) includes the knowledge of
the window in the BEM design. We will show in Section V
that option ii) generally yields a tighter fit. This is because the
window itself brings some additional time-variation on top of
the unwindowed channel, which probably requires more basis
functions for the traditional “unwindowed” BEM to maintain a
tight fit. However, the time-variation due to the window is to-
tally predictable and, hence, can be counteracted by simply ab-
sorbing it in our BEM design. The CE-BEM is an exception es-
pecially for channels with high Doppler spreads, in which case
it is better to use option i). This is because the window is usu-
ally designed to make the frequency-domain channel matrix as
banded as possible, and the CE-BEM yields itself a perfectly
banded frequency-domain channel matrix. As a result, it is not
necessary to include the window in the CE-BEM design.

C. OFDM System Model Based on BEM

From now on, we can describe the OFDM system model de-
rived previously in light of the BEM. Since all the algorithms in
this paper will be based on a single OFDM symbol, we drop the
block index k in the sequel. Substituting (4) in (2), we obtain
after some algebra

Q
y:ZDqus—l—n—l—(? @)

q=0



TANG et al.: PILOT-ASSISTED TV CHANNEL ESTIMATION FOR OFDM SYSTEMS

e
= =
sf)p) sgp)

Fig. 2. Pilot placement pattern.
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where § denotes the error vector induced by the BEM fitting
error €, D, is a circulant matrix whose first column is the fre-
quency response of the gth basis function

D, := Fdiag{b,}F# ®)

and A, is a diagonal matrix whose diagonal is the frequency
response of the BEM coefficients corresponding to the gth basis
function

A, = diag {FL[hq707 R hq7L]T} . ©)

Here, F';, stands for the first L + 1 columns of the matrix VNF.

Note that (7) subsumes the expression for time-invariant (TT)
channels, in which case Q = 0 and D, becomes a scaled iden-
tity matrix. For TV channels, the nondiagonal entries of D, are
in general not zero any more. This leads to a loss of orthogo-
nality among the subcarriers known as ICI.

Before going on further, we will make the following
assumption:
al) the BEM approximation holds perfectly, i.e., € =

6 =0.

This assumption is motivated by the fact that we will mainly
focus on BEMs that allow for a very good fit.! For other BEMs
that fail to capture the time-variation adequately, such as the
CE-BEM for instance, we should actually take the modeling
error into account. This topic is partly treated in [32]. However,
even if we include this error term to derive the best estimator
possible, we still do not have a reliable channel estimate simply
because the BEM itself is not capable of fitting the true channel.
This suggests that it makes not much sense to take the modeling
error into account and explains why we apply al) for all possible
BEMs.

0 or

III. DATA MODEL FOR CHANNEL ESTIMATION

Instead of estimating the true bulky channel matrix H, we
will estimate the (L 4+ 1)(Q + 1) BEM coefficients in h with
the aid of pilots. We assume there are M pilot clusters of length
L, denotedas s'®),m = 0,1,..., M — 1, as indicated in Fig. 2.
All these pilot clusters stacked together form the pilot vector

T
s®) .= s(()p o ssf})i] . The pilot clusters are interleaved

with information symbols, which can be collected in the infor-
mation symbol vector s(4).

It is not clear what is the optimal pilot placement for TV
OFDM systems. References [10] and [13] claim that equidis-
tant pulse-shaped pilot clusters are optimal based on a CE-BEM
channel assumption, while equidistant pilot clusters also find
their practical advantage in [18] though the channel follows the
bathtub-shaped Doppler spectrum in that case. Despite its sig-
nificance, we will not discuss this issue here but allow our re-

'A modeling performance comparison (except for the DKL-BEM) can be
found in [6].

2229

ceiver design to be applicable for any frequency-multiplexed
pilot placement scheme.

For a certain frequency-multiplexed pilot placement scheme,
it is up to the receiver to decide which of the received samples
must be used for channel estimation. This is crucial for a TV
OFDM system since, due to the ICI (or in other words, the non-
diagonal entries of D), the pilots’ power is spread out over the
whole frequency band. A judicious choice of the observation
samples will enhance the channel estimation performance.

Generally speaking, D, is approximately banded suggesting
that the ICI primarily comes from adjacent subcarriers [18],
[28]. An extreme case occurs with the CE-BEM channel model,
where the corresponding D is an identity matrix but circularly
shifted over ¢ — (@) /2) columns, which implies that only the @
neighboring subcarriers give rise to interference.

To clarify the notations that will come forth, we plot the
structure of D, in Fig. 3, where the columns of D, are re-
lated to the positions of the pilots and data, which operate
on D, through the diagonal matrix A,. The rows of D, are
related to the observation samples. For the mth pilot cluster
s = (slp,.s---.[slp,+L,-1]", where P, stands for its
begin position, let us consider the following vector consisting
of L, — 2B, observation samples:

(10)

Yo = [91Purnes s 9Ptz -]

It can be imagined that if D, were strictly banded with only
2B. + 1 nonzero diagonals, y,, would be the vector of max-
imal length that exclusively depends on the pilot cluster sffi ). In
this sense, B, could be interpreted as the assumed bandwidth
of Dy, as suggested in Fig. 3. However, we must be cautious
with this interpretation, because Dy is not strictly banded for
most BEMs. As a matter of fact, B, actually provides a handle
on the amount of interference that we want to take into account.
More importantly, B, is not confined to positive values as we
will see later on, in which case the bandwidth physical interpre-
tation cannot be directly accounted for.

To formulate the previous discussion in mathematical expres-
sions with notations indicated in Fig. 3, we obtain

Q Q
Ym =y DPAP® 13 "D ADs@ +n,, (1)
q=0 q=0

dmm

where D,(II: ), is an (L, — 2B.) x ML, matrix, representing
the hatched parts of D, in Fig. 3; Aflpg isan ML, x ML,
diagonal matrix, which is carved out of A, corresponding to the
pilot-carrying subcarriers; D", isan (L, —2B,)x (N — M L,)
matrix, representing the shaded parts of D, in Fig. 3; A((Id isan
(N —ML,) x (N — ML,) diagonal matrix, which is carved
out of A, corresponding to the data-carrying subcarriers; finally,
n,, stands for the noise related to y,,. In (11), we have thus
uncoupled the effect of the data from the pilots, and put it in a
separate term d,,,. This term, which poses a nuisance to channel
estimation, is in general not zero since D is not strictly banded.
Let us rewrite (11) as a function of h

Ym =DPS®h 1+ d,, +n,, (12)
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with

DY := [DY),,....D),]

and

sP) .= Iot 1 ® (diag{s(p)}ng)) .

Here, ng ) collects the rows of F L corresponding to the posi-
tions of the pilots. Further, we want to underline that the inter-
ference term d,,, carries also channel information h as can be
seen from

d,, = DWsDn (13)
with DY = [D{),....DY), | and $Y = Iop @

diag{s(® }F(Ld) . Here, FS{I) collects the rows of Fy, corre-
sponding to the positions of the information symbols.
Repeating the previous operations for all the observation vec-

tors and introducing theT notations y® := [yf,... ’yﬁfl] r
d:=[df,...,d},_,] ., and n®) = [nf,....n,_|]", we
obtain
y® =D@®SPH 4 d + n®
=Ph+d+n® (14)
with
P .=DPgP
T
D® = D", DY ]
Dy .. DO,
Dg)z,)z)vpl Dg,)MA

Likewise, we can express the interference term d as

d =DWsp as
with
T
d)T d)T
D@ = [D{",... . D]
d d
Df} .. D
d: d:
D, Dy

The afore described interference analysis is not restricted to
any specific BEM. However, note that for the CE-BEM D, is
strictly banded, and thus Dl(ld) = 0. Apparently, this leaves no
vagueness about B., which should then be set to B. = Q/2.
This case is considered in [13].

IV. CHANNEL ESTIMATION AND B, OPTIMIZATION

In this section, we will discuss channel estimation based on
the data model that has been established in the previous section.
We make the following assumptions:
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al) time-domain noise prior to windowing n(*) is assumed
to be zero-mean white Gaussian with variance o2;

a2) data s(¥ are assumed to be zero-mean white with
variance Uf and uncorrelated with the noise n, i.e.,
E{sDnH} = 0.

We will propose three channel estimators in this section: the
LMMSE estimator relies on the statistics of h, while the LS es-
timator and the BLUE treat h as a deterministic variable. The
performance of each channel estimator is sensitive to B.. This
can be understood from (14) and (15), where the pilot-related
D®) isan M (L, — 2B,) x (Q + 1)M L,, matrix, and the inter-
ference-related D(¥) is an M (L, —2B.) x (Q +1)(N — M L,)
matrix. Intuitively, one would reduce the interference term by
setting B, as large as possible. The same idea is adopted in [18]
though the authors address the problem from a different point
of view. To explain this using the physical interpretation of B,
a larger B, corresponds to a more accurate band approximation
of Dy, and thus to a smaller interference. On the other hand, a
larger B., giving rise to a “fatter” D) is often detrimental if
we are to deploy a linear channel estimator. We will examine
the effect of B, individually for each estimator.

A. LMMSE Estimator

The LMMSE estimator treats h as a stochastic variable. To
be more specific, we introduce the following assumption:
a4) channel vector h is assumed to be uncorrelated with the
noise n and the information symbols s(¥), i.e., £{hn”} =
0 and £{hs(®H} = 0.
We seek a linear filter W such that the MSE between the
estimated BEM coefficients h = Wy ®) and the true BEM
coefficients h is minimal. In other words, we solve

Winmmvse = arg{; m}in trace{f,‘h,s(d)’n(p){(Wy(p) —h)
w

(Wy® —n)"1}. (16)

It can be shown that

gh,s(d)7n(P){(Wy(p) - h) (Wy(p) — h)H}

=W <’PR;L’PH +Ry+R{P
4R (D<d>5s<d> {S(d)}Rh’PH)> wH

— 2R (Rh’PHwH + Ry {S(d)H}D(d)HWH)

+Ry
= W(PR, P + R, + RP)WH

— 2R (R, PTWH) + R, (17)

In deriving (17), we make use of assumptions a3) and
a4), and introduce the following covariance matrix no-
tations R, := &p{hh"}, Ry = &, 0 {dd”}, and
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Fig. 3. Relation between the pilots and the received samples.

RY = En {(n®PnPHY - whose computation is given
in Appendix A. Equation (17) leads to

hiavvse = Wianisey

-1
Winuse = Ry PY (PRhPH +Rg+ Rf{’))

=R,P? (PR,P + R7) ™

(18)
where Rz := Ry +R7(1p ) Note that although (18) bears a similar
form to the classical LMMSE estimator [33], it has the extra task
to process the interference term d, which contains the informa-
tion of h itself. For this purpose, the proposed LMMSE treats d
as stochastic and resorts to the assumed statistics of h and s(®).
However, these statistics are difficult to retrieve in practice and
not always reliable if, for instance, the Doppler spread is only
roughly known or the assumed Doppler spectrum deviates from
the true value. In such cases, the proposed LMMSE estimator is
suboptimal. We will show some examples in Section V.

We want to use h to reconstruct the BEM channel, and ex-
amine how close it is to the best BEM fit of the real channel. To
this end, we adopt the MSE criterion as

MSE i= & o) i {I(B @ Tz31)h — (B @ Tpy1)hl}
:trace{(B ® IL+1)ghys(4)7n(p) {(fl — h)(fl — h)H}
B® IL+1)H}

= trace {gh,s(d>,n<p> {(fl —h)(h - h)H}} .

The last equality holds since we have designed B to have or-
thonormal columns [cf. (6)]. Equation (19) suggests that the

19)

channel fitting MSE equals the MSE of the estimated BEM
coefficients. Therefore, the MSE resulting from the LMMSE
channel estimator can be expressed as

MSEq1 vMse = trace { ('PHRELP + Rh_l) ! } . (20)
Obviously, MSE\vvsE depends on B... Later on, we will show
how to find the optimal B, to minimize MSE \vsE-

B. LS Estimator

The LS estimator W g treats h as a deterministic variable. It
is straightforward to obtain Wyg := P such that
hrs = h+ Pi(d +n®). @1
The LS estimator is the most robust estimator, requiring no
knowledge about the channel and noise statistics. However, it
performs inferior when the interference is prominent: we show
in the simulation part that the LS estimator suffers from a large
performance gap in comparison with the Cramer—Rao bound
(CRB) (derived in Appendix B). In addition, the performance
of the LS estimator relies heavily on the condition number of P
as we can see from the resulting MSE

MSELs :=E€, s(4) n(» {trace{’PT(d+n(P))(d+n(p))HpTH}}
=trace {Pfgh,s(d),n(P) {(d+n(p))(d+n(P))H} PTH}

=trace {'PT R, P } (22)

which is again a function of B..



2232

C. [Iterative BLUE

From (14), we can find an expression for the BLUE following
similar steps as in [33, Appendix 6B] by treating the interference
d and noise n(®) as a single disturbance term such that

hprue = WaLuey™,

WhiLuE = ('PHR;(h)'P) 1PHR;(h) (23)
where f{I(h) denotes the covariance matrix of the disturbance.
Here, h is again viewed as a deterministic variable and, there-
fore, Rz(h) = &y nw {(d +n®)(d +n®)H}. Due to a3),
we have R7(h) = Ry(h) + RY with Ry(h) := £, {ddH},
whose derivation can be found in Appendix A.

However, (23) is not implementable since its computation en-
tails the knowledge of h itself. A recursive approach can be,
therefore, applied: suppose at the kth iteration, an estimate for
h is available denoted as thL g+ Next, we use this estimate to
update the covariance matrix Rz(h), which in turn is used to
produce the BLUE for the next iteration and so on

-1
k+1 Hp -1 (1.(k Hi—1 (1.(k
W](3LU]21 = (P R7 (hgleE) P) P R; (h1(3L)UE>

k+1 k+1
h](3LU]2] = WEBLUI)Ey(p)'
Note that a similar idea is adopted in [34] though applied in
a different context. To ensure that this iterative procedure will
converge, we can simply initialize with hgngE = 0, which
results in the following expression for the first iteration:

Wikee = (7 (1)) ()
From a2), (24) is the maximum-likelihood estimator (MLE)
[33] that is obtained by ignoring the interference d. The re-
sulting flgﬁUE = WSEUEy(p) is actually the LS fit as obtained
in Section IV-Bbut weighted by the noise covariance. If d is
small, which is often the case by carefully selecting B,., ﬁgﬁUE
is already close enough to h to avoid convergence to a local
minimum. . .

Assuming that hl(akleE — hprug, we use (23) to find the
MSE of the channel estimator

(24)

MSEBLUE = & s() n(r) {tfﬁce {WBLUE(d +n®)
(d+ n(p))HWgLUE} }
=¢n {trace (WBLUERI(h)WgLUE> }

— & {trace (('PHR;l(h)'P)_1> } . (©5)

Equation (25) provides a lower bound on the performance of
the iterative BLUE. This MSE is, however, difficult to evaluate
in closed form due to the inversion of f{z(h), which forces us
to resort to the Monte Carlo method. As will be evident later
on, the MSE resulting from the BLUE is also dependent on the
choice of B..

D. Optimization of B,

In this section, we will optimize the number of observation
samples used for channel estimation, or in other words seek the
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optimal B, that will minimize the estimator variance given in
(20),(22), and (25) for the LMMSE, LS, and BLUE, respectively

B, = arg min MSE.
{B:}

(26)

It is difficult to find a closed-form solution for (26), especially
for the BLUE. An alternative is to evaluate (26) exhaustively,
which is feasible since there is only a limited range for the pos-
sible values of B,

L, N L

P _ < B, <=E_
2 o2M — "= 2

(L+1)(Q+1)
oM

as we recall that M is the number of pilot clusters and L,, is
the size of each pilot cluster. Clearly, the lower bound of B, is
due to the fact that the number of observation samples M (L, —
2B,) cannot exceed the number of subcarriers N. The upper
bound is associated with the rank condition of P. To have a
good performance in the absence of interference and noise, all
considered channel estimators require P to have full column
rank. Despite its importance, it is beyond the scope of this paper
to discuss sufficient conditions for P to have full column rank,
which will depend on the choice of a specific BEM, the pilot
pattern, and B.. Note that the full column-rank condition can
be always checked offline. However, a necessary condition for
P to have a full column rank is that it should be tall or at least
square, which posts a lower bound of B..

Fortunately, even the exhaustive search might be avoided
as will become evident from the simulations, where the
MSE-versus-B,. curves for each channel estimator often exhibit
a monotonous trail, although not necessarily in the same direc-
tion. For the LS channel estimator, the curve is monotonously
descending and thus the optimal B. must be chosen as large
as possible. To explain this, we recall that a larger B, leads
to a more accurate band assumption of the channel matrix
and, hence, to a smaller out-of-band interference power as
suggested in Fig. 4(a). This is beneficial to the LS estimator,
which is not good at suppressing the interference due to the
lack of statistical knowledge. Opposed to the LS estimator, the
LMMSE estimator and BLUE require the B.. to be as small as
possible. For practical setups, this often implies a negative B,
in which case the observation samples outnumber the pilots as
illustrated in Fig. 4(b). We can see that some of the observation
samples, e.g., in the two boundary areas, will suffer a very
low signal-to-interference-and-noise ratio (SINR) because for
these observation samples the unknown data are magnified by
the high-power diagonals of the channel matrix and, hence,
are much more prominent than the pilots. However, this casts
no serious problem to the LMMSE estimator and BLUE since
both of them can take the interference into account in a positive
way. We will come back to this issue in Section V.

27

V. NUMERICAL RESULTS

In this section, we consider an OFDM system with N = 256
subcarriers, where roughly 80% of the subcarriers are used for
transmitting data symbols. The remaining subcarriers are re-
served for pilots, which are grouped in M = 6 equidistant clus-
ters, each containing L, = 9 pilot tones. Inside each cluster, we
adopt the scheme referred to as “frequency-domain Kronecker
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Observation Samples

Fig. 4. Relationship between one pilot cluster and its corresponding observation samples via the channel matrix. The tint suggests the power degradation in the

channel matrix. (a) B, > 0. (b) B. < 0.

delta” (FDKD) in [13], where a nonzero pilot is located in the
middle of the cluster with zero guard bands on both sides.

The proposed channel estimators will be cast to TV channels,
whose variation is described by the Doppler frequency normal-
ized to the subcarrier spacing

fo = Ye

C

TsN (28)
where v denotes the “virtual” velocity, f. the carrier frequency,
TN the OFDM symbol duration, and ¢ the speed of light. Note
that in case of a moving terminal, the “virtual” velocity equals
the terminal velocity, whereas in case of a moving scatterer, the
“virtual” velocity equals twice the scatterer velocity. To be able
to approximate the TV channel by a CE-BEM, we use the stan-
dard rule of thumb Q < 2fp to satisfy the Nyquist criterion.
In the following test cases, we set fp < 1 such that @ = 2
could be adequate, but in order to reduce the impact of the BEM
modeling error we select () = 4. For other BEMs, a different
number of basis functions could lead to a better modeling per-
formance. However, to make a comparison for a fixed estimation
complexity, we will fix @@ = 4 for all BEMs.

In the following test cases, we will restrict ourselves to a
moving terminal with many uniformly distributed scatterers in
the close vicinity of the terminal, leading to the typical bathtub-
shaped Doppler spectrum [1]. We will follow the algorithms
givenin [35] to generate TV channels conform to such a Doppler
spectrum. Further, we assume the channel to be a finite-impulse
response (FIR) filter with L+1 = 6 taps, which are independent
random variables with an exponential power intensity profile.
More specifically, we take Ruultipatn = diag ([03, ..., 07])
in (34) with ‘712 = ¢~ /10 T short, we will characterize the TV
channel with (L + 1)(Q + 1) = 30 BEM coefficients.

Test Case 1. The BEM Justification: We first list the mod-
eling performance (e.g., the channel fitting performance in the
absence of noise) of the DKLL.-BEM, CE-BEM, GCE-BEM, and
P-BEM for arange of fps. The DKL-BEM is constructed based
on the bathtub-shaped Doppler spectrum but fixed at fp =
0.6, and is thus suboptimal for other fps. The BEM-modeled
channel is compared to the true channel after windowing in
terms of the modeling error &) {||€]|?}. For the window de-
sign, we adopt the “MBAE-SOE” window presented in [30],

BEM Modeling Error

i BEM design option (ii)[4
2| = — — BEM design option (i) |
O DKL-BEM
O GCE-BEM 4
A P-BEM

> CE-BEM

i T
0.25 0.5 0.75 1
Doppler frequency

Fig. 5. Justification of (windowed) BEM.

which is a sum of three complex exponentials. We examine the
modeling performance for two BEM designs: the first BEM
design follows option i) in (6), which is the traditional BEM
design ignoring the windowing; the second BEM design fol-
lows option ii) in (6), and is adapted to the windowing. From
the results that are sketched in Fig. 5, we can observe that by
taking the windowing into account, the BEMs following op-
tion ii) yield in general a tighter fit with the windowed channel,
with the only exception of the CE-BEM, which, by following
option i), performs better within the tested Doppler frequency
range. Further, it can seen that the DKL-BEM and P-BEM have
the smallest modeling error at low Doppler frequencies but lose
track if the channel varies faster. Apparently, for the DKL-BEM,
the mismatch due to an underestimated Doppler frequency is
much more harmful than the mismatch due to an overestimated
Doppler frequency. The GCE-BEM that is virtually independent
of the Doppler frequency is more robust in this sense.

For the following simulations, we will concentrate on TV
channels at the following two Doppler frequencies: 1) fp = 0.2
and 2) fp = 1. For the LMMSE estimator, we will use the
DKL-BEM and allow for a mismatch by assuming fp = 0.6,
which means that the mismatch will be induced not only in the
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Fig. 6. MSE versus B, for the LMMSE estimator. Solid curves: fp = 1.
Dashed curves: fp = 0.2.

BEM, but also in the estimator design. For the LS estimator
and the BLUE, we will just use the GCE-BEM since both the
channel estimators and the BEM are independent of the channel
statistics. In addition, we will also compare our results with the
channel estimation method for the CE-BEM presented in [13].
Note that this method resembles our proposed LMMSE esti-
mator (without mismatch) but uses a data model that is only
applicable to the CE-BEM, i.e., the channel matrix is viewed as
strictly banded.

Test Case 2. Seeking the Optimal B..: First, we need to find
an optimal B, for the different channel estimators. From (27),
B, is bounded by

—-16 < B. < 2. (29)
For these values, we evaluate the MSE of the LMMSE estimator
(20) for signal-to-noise ratio (SNR)= 10, 20, 30, and 40 dB,
and depict the results in Fig. 6. We observe that at low SNR, the
effect of B.. is not pronounced, whereas at high SNR, a smaller
B, corresponds to a smaller MSE. This is especially true for
fp = 1, where the ICI is still severe in spite of windowing.
Tuning B, is of greater importance in that case. Therefore, we
choose B. = —16 as the optimal value, which implies that the
whole OFDM symbol will be invoked for channel estimation.

The results for the LS estimator are plotted in Fig. 7, where
we observe that B. must be chosen as large as possible, i.e.,
B. = 2.

For the BLUE in Fig. 8, a smaller B, always yields a lower
MSE just like the LMMSE estimator and we should also take
B. = —16. However, complexity plays a crucial role in this
case, because the BLUE has to be computed recursively and the
procedure must be repeated for every OFDM symbol (note that
the LMMSE estimator is in essence time-invariant and can thus
be precomputed and stored offline). In practice, a smaller B,
often requires more iterations to reach convergence, and during
each iteration, it inflicts a larger computational effort because
more observation samples have to be processed. Observing that
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Fig. 7. MSE versus B. for the LS estimator. Solid curves: fp = 1. Dashed
curves: fp = 0.2.
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Fig. 8. MSE versus B, for the BLUE. Solid curves: fp = 1. Dashed curves:
fp =0.2.

the MSE curve descends only slowly for B, < —3, we select
B, = —3 as a good compromise between complexity and per-
formance for the BLUE.

Test Case 3. The Estimator Performance: Having determined
B. = —16 for the LMMSE estimator, B. = 2 for the LS es-
timator, and B. = —3 for the BLUE, we inspect their channel
estimation performance for a wide range of SNRs. Next to the
MSE defined in (19), which we will refer to as the “BEM MSE,”
we will also look at the so-called “channel MSE” which we de-
fine by

N4
MSE-CH := &) {Hh(t) ~ (B ®IL+1)hH } (30)

Note that the channel MSE differs from the BEM MSE in that it
explicitly takes the BEM modeling error into account, whereas
the BEM MSE merely indicates how close the estimated channel
is to the best possible BEM fit. Fig. 9 depicts the performance
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Fig. 9. MSE of the BEM versus SNR. Solid curves: fp = 1. Dashed curves:
fo =0.2.
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Fig. 10. Channel MSE versus SNR. Solid curves: fp = 1. Dashed curves:
'p = 0.2.

in terms of the BEM MSE, whereas Fig. 10 depicts the perfor-
mance in terms of the channel MSE. We observe that these two
performances are in general very close to each other, which sug-
gests that assumption al) brings no harm to channel estimation.
Further, we remark that the LMMSE estimator, which is subop-
timal due to the Doppler frequency mismatch, performs much
better under TV channels with fp = 0.2 than with fp = 1. This
suggests that underestimating the Doppler frequency is more
harmful than overestimating it.

The BEM MSE is also compared with the CRB (see the
derivation in Appendix B) in Fig. 9. The CRB is based on
B. = —16 and obtained using the Monte Carlo method,
thereby exploring the channel statistics. We observe that the
performance of the BLUE is very close to the CRB.

Test Case 4. Equalization Performance Based on the Esti-
mated Channel: For this test case, we will transmit quadra-
ture phase-shift keying (QPSK)-modulated data symbols, and
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Fig. 11. BER versus SNR. Solid curves: fp = 1. Dashed curves: fp = 0.2.

the channel will be equalized by the banded LMMSE equalizer
proposed in [30], although other banded equalizers can be em-
ployed as well [29], [31]. In short, the equalizer can be described
as
s=HIG 'y

G = (HxkHY + R, + 0°I) (31)
where H is the banded approximation of the original channel
matrix, Hr = HO Tk with Tk being an N X N matrix whose
main diagonal, K subdiagonals, and K super-diagonals are
ones, and the remaining entries are zero. Thanks to the banded
approximation and a simple banded LD L decomposition of G,
the complexity of the banded LMMSE equalizer is O(K?2N).
Not disclosed in [30], a regularization term o2I is added to
the expression of G, which serves to prevent performance
degradation at high SNR. This performance degradation is
caused by the following: i) the band approximation error and
ii) the fact that the “pseudocirculant” channel matrix H itself is
extremely ill-conditioned. To determine o in practice, we can
first apply (31) by setting o = 0, then observe from which SNR
the BER curve begins to saturate, and finally choose o2 based
on that SNR.

To examine the influence of the channel estimation error on
the equalization, we construct the banded LMMSE equalizer
utilizing the estimated channel obtained from our LMMSE esti-
mator, LS estimator, and BLUE, respectively. We choose K = 9
in (31). As a comparison, we also list the equalization perfor-
mances, which are based on the estimated CE-BEM channel
and the perfect CSI. It can be seen that due to the Doppler di-
versity the equalizer renders a better performance for faster TV
channels, but it is plagued by a higher BER floor. Comparing
the results in Fig. 10 with those in Fig. 11, we can conclude
that the equalization performance is in consistence with the cor-
responding channel estimation performance for each Doppler
frequency. Take the DKL-BEM and the CE-BEM at fp = 1,
for instance; the channel estimation for the CE-BEM is better at
low SNR but worse at high SNR than that for the DKL-BEM.
We can make a corresponding observation in Fig. 11.
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VI. CONCLUSION

In this paper, the TV channel is modeled by the BEM, which
takes possible windowing into account. We view the resulting
channel to be approximately banded, and, hence, the interfer-
ence comes primarily from the out-of-band part of the channel
matrix, which is combated by an LMMSE estimator, an LS esti-
mator, and an iterative BLUE. It is worth underlining that using
these channel estimators, we recover the full frequency-domain
channel matrix, instead of its banded approximation (unless we
use a CE-BEM assumption).

APPENDIX A
DERIVATION OF COVARIANCE MATRICES RSL” ), R, AaND Ry(h)

Let us start with the covariance matrix of the noise term n(®),
ie.,

RP) = & {n®n®HY (32)
It is clear that R,(f) is extracted from a larger matrix R,, =
En{nn’’}, which can be easily obtained from assumption a2)
by taking the windowing and demodulation into account: R,, =
o2 Fdiag{w }diag{wH }FZ R is comprised of the rows and
columns of R, corresponding to the positions of y®).

Since the interference term d depends on the BEM coeffi-
cients h, we can make a distinction between two types of covari-
ance matrices. One is based on a stochastic channel assumption,
whereas the other is based on a deterministic channel assump-
tion, which lead to R, and Rd(h), respectively. Note that for
both cases the information symbols s(?) are always viewed as
stochastic.

We first assume that h is stochastic with Rj, = &,{hhf}.
To derive its expression, let us introduce the (Q + 1) x (Q +
1) matrix Ry, which is defined as the autocorrelation of the
BEM coefficients for tap I: Ry ; := & {hlth}}. By taking the
windowing into account, we can easily derive that

Ry, = Bldiag{w} R}’ diag{w7} B! 33)
where f{gf )l being defined in (5) is related to the specific Doppler
spectrum. In addition, if we use an (L 4+ 1) X (L + 1) matrix
R uitipath to describe the correlation due to the channel’s
frequency selectivity, which depends on the correlation be-
tween the channel taps and the power intensity profile, e.g.,
[Rmultipath]p,q =& {iLg’)piLg,)q*}, we have

Rmu ipath
Rp=Rp1® —JE; o
3 {|hn,l 2}

With R;,, we can derive the covariance matrix of the interfer-
ence term d as

(34)

R, = gh,s(d){ddH}
=E&h s {D(d)8<d)hhH8(d)HD(d)H}

=DWR,D®HH (35)
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where using assumption a4), we have
R, =& o {s<d>hhHs<d>H}
=& { (IQ+1 ® diag{s(d)}F(Ld))
x Ry, (IQ+1 ® diag {s<d>} F(Ld)) H}
=& { (IQ+1 ® diag{s<d)})

H
x X (IQ+1 ® diag{5<d)}) }

o (d) DV itirioe ac
with X := (Ig41 @ F;7 ) Ry, (Ig+1 @ Fj, . Utilizing as

sumption a3), we can easily verify that

Rulon = 02[X]mn, if mod(m —n,Ng) =0
w0, otherwise
where Ng = N — ML, is the total number of information

symbols in s(®). )
In contrast with R4, R4(h) is obtained by assuming that h is
deterministic

Ry(h) =& {dd¥}
=&, {DDSOhn SOHD(DHY

&
E
D@WR, (h)D®H

(36)

where using assumption a3), we have

R, (h) := & {SPhh §HH)
=diag { (To11 ® Fi” ) b}

H
X Eg(ay {(1Q+1,1 ® s@ (1Q+1,1 ® S(d)) }

((los i) )
= o2diag ((IQ+1 ® F(Ld)) ) (1g+1,0+1 ®In,)
x diag ((IQ+1 ® F(L’l)) h)H . (37)

APPENDIX B
CRB

For the sake of simplicity, we assume that y*) is Gaussian
distributed with mean Ph and covariance matrix Rz (h). This
is supported by assumption a2) and by the fact that N is large
enough to make d approximately normal-distributed due to the
central limit theorem. The negative Gaussian log-likelihood
function £ can hence be written as

—L = Cln(det(Rz(h)))
+(y® —Ph)"R7'(h)(y*?) —Ph) (38)



TANG et al.: PILOT-ASSISTED TV CHANNEL ESTIMATION FOR OFDM SYSTEMS

which leads to the following Fisher information matrix (FIM):

oc\"* [oc
j(h) = 55(4),11 (%) <%>

Adapting the results given in [36], we can formulate the real

FIM as
Re(Jg5) —Im(Jee)]
h)=2
J(h) |:IH1(J99) Re(Jgg)
Re(Jgp) —Im(Jgg-)
9 40
+ |:IIn(J60*) Re(JGQ*) ( )
where
i . L ORs - . OR
o Hea—1 —1YT 51 T
[Tooli,j : [’P R> 'PLJ-l—trace R; 8[h]?RI hJ;
. 0R7 - _, 0R
L -1 T —1 Z
[Joo+]; ; :=trace | R} —a[h]f T J[hl;

Let us now focus on computing (81§{I/8[h]j) Since
[8R1/8[h]ﬂ = O[Ra]m.n/O[h]%, we want to formu-

K}
m,n J

late [Rz]m.n as a function of [h]7. This is achieved by realizing

that

Rzl = el (D(d)ﬁd(h)D(d)H + Rf{’)) e,

with R4(h) defined in (37). Following the derivative rules given

in [37], we have

IRZmn 1 (d) ORq4(h) ()H
- - = D 7D n
omj; om0 omp

ORq(h)

(39)

(41)

o) =0} ((IQ+1 ® F(Ld)) h) (1g+1.+1 ®1In,)

ddiag ((IQ+1 ® F(Ld)) h)H

X Ol

To work out the last e%ation, we realize that in the matrix
diag; ((Tg11 @ F")h) ", only the (14 [j — 1/L+ 1] Ny)th

until the (Ny + |j — 1/L + 1| N)th diagonal entries are asso-
ciated with [h]%, with the coefficients F(Ld)*emod(j,l’ LH1)41-

Therefore

odiag ((IQ+1 ® F(Ld)> h)H
9[hl;

= diag (|:01,Lj71/L+1JNd7eqr:qod(j—l,L-l-l)-l-lFl

T
01 - -1/zsv )

(HH

(42)
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Coining some new matrix definitions

H :=diag ((IQ+1 ® F(Ld)) h)
F; =1g41,1 ®diag {ng)*emod(j—l,L+1)+1}
d T
DI =D [0n, j-1/241) N IN,ONu (@ i-1/2 41V,
(43)
we can easily show
R
8[h]ﬁ = o’ DWHF, DIV, (44)

J

With the obtained FIM, we find a lower bound on the channel
estimator’s variance [33]

CRB = trace {(J(h))~*}
< trace {gsw),n{(ﬁ —h)(h- h)H}} 45)

which is also a lower bound on the MSE of the BEM channel,
as can be seen from (19).
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