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Abstract—This paper deals with coded-excitation tech-
niques for ultrasound medical echography. Specifically, linear 
Huffman coding is proposed as an alternative approach to oth-
er widely established techniques, such as complementary Golay 
coding and linear frequency modulation. The code design is 
guided by an optimization procedure that boosts the signal-
to-noise ratio gain (GSNR) and, interestingly, also makes the 
code robust in pulsed-Doppler applications. The paper capital-
izes on a thorough analytical model that can be used to de-
sign any linear coded-excitation system. This model highlights 
that the performance in frequency-dependent attenuating me-
dia mostly depends on the pulse-shaping waveform when the 
codes are characterized by almost ideal (i.e., Kronecker delta) 
autocorrelation. In this framework, different pulse shapers and 
different code lengths are considered to identify coded sig-
nals that optimize the contrast resolution at the output of 
the receiver pulse compression. Computer simulations confirm 
that the proposed Huffman codes are particularly effective, 
and that there are scenarios in which they may be prefer-
able to the other established approaches, both in attenuating 
and non-attenuating media. Specifically, for a single scatterer 
at 150 mm in a 0.7-dB/(MHz∙cm) attenuating medium, the 
proposed Huffman design achieves a main-to-side lobe ratio 
(MSR) equal to 65 dB, whereas tapered linear frequency mod-
ulation and classical complementary Golay codes achieve 35 
and 45 dB, respectively.

I. Introduction

Ultrasound echography is a medical imaging tech-
nique that is often used for diagnostic purposes, most-

ly because of its safety and simplicity of use. The quality 
of ultrasound images is assessed by performance measures 
such as the spatial resolution, penetration depth, SNR, 
and contrast resolution. Typically, these performance 
measures depend on trade-offs between ultrasound physi-
cal parameters (e.g., frequency, bandwidth, transmitted 
power) and the specific beamforming technique that is 
used [1]. For instance, for a given transmitted power, high-
frequency ultrasound is characterized by better lateral 
resolution, which is proportional to the signal wavelength 
[1], [2]. Note that the lateral resolution contributes to the 
overall spatial resolution together with the axial resolu-
tion, which depends on the signal bandwidth. However, as 
will be clarified in Section II, frequency-dependent attenu-
ation in high-frequency ultrasound induces a shorter pen-

etration depth and a lower SNR. In practice, it is difficult 
to compensate for this decrease in penetration depth by 
increasing the amplitude of the transmitted ultrasound, 
which is limited by the cost of pulse generator and trans-
ducer, as well as by patient safety, because of the increase 
of the tissue temperature [3]–[7]. Consequently, it is dif-
ficult to obtain high penetration depth with high spatial 
resolution.

A possible approach to improve the penetration depth 
and SNR is the use of coded-excitation (CE) methods 
[8]–[16], i.e., to excite the ultrasound transducer with a 
long modulated pulse. This long excitation increases the 
transmitted energy without increasing the pulse ampli-
tude; however, a long excitation would also degrade the 
axial resolution, which is restored by pulse compression at 
the receiving end. In practice, the pulse duration can be 
extended up to certain limits, which are imposed by regu-
latory agencies for patient safety, as clarified in [17], [18], 
and references therein. Actually, the CE approach, which 
has been widely used in electromagnetic radar system de-
sign [19], has not been fully exploited for ultrasound medi-
cal applications because of the problems arising from non-
isolated target detection, speckle, frequency-dependent 
attenuation of the human body, lower system bandwidth 
imposed by piezoelectric transducers, and limited dura-
tions of transmission [8].

Only in the recent past, researchers renewed their in-
terest for CE schemes for medical ultrasounds, and dif-
ferent techniques have been proposed [8]–[16], [20]–[23]. 
Most of them focused on linear frequency-modulation 
(FM) (i.e., chirp) codes coupled with pre-enhancement 
and bandwidth enlargement techniques [8]–[11], [20]–[23]. 
Alternatively, other authors proposed single- [12] and dou-
ble-transmission [13], [14] phase-modulating codes, which 
are attractive for their low hardware implementation com-
plexity. Conversely, in the previous decade, researchers 
refrained from using amplitude-modulating codes in ultra-
sound because of the technical challenges associated with 
the physical generation of ultrasound signals with variable 
amplitude [24] and, still recently, because of the lower av-
erage energy that is possible to transmit. However, the 
sharp (i.e., 12-bit) amplitude resolution that is possible 
in recent ultrasound systems, such as those exploiting 
linear-FM transmissions (e.g., nonlinear codes with con-
stant amplitude) [15], and the availability of optimization 
procedures to boost the transmitted signal energy [25], 
are good arguments to further explore the use of linear 
codes with non-constant amplitudes for ultrasound im-
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aging. Actually, constant-amplitude complementary Go-
lay codes [13], [14], which cancel side lobes by using two 
complementary excitations, provide optimal performance 
in frequency-flat environments (commonly referred to as 
non-attenuating media). However, Golay codes suffer from 
a performance degradation in the presence of frequency-
dependent attenuation [16] and they are not robust to the 
frequency-shifts induced in pulsed-Doppler applications. 
On the contrary, linear-FM codes [16], which are robust to 
frequency-dependent attenuation, suffer from a non-ideal 
(e.g., non-Kronecker-Delta) autocorrelation function in 
frequency-flat environments and, consequently, are char-
acterized by a certain degradation in contrast resolution. 
Motivated by the goal of a CE technique that could guar-
antee the quasi-absence of side lobes, both in the presence 
and in the absence of frequency-dependent attenuation, 
the authors recently proposed in [26] to generate the ultra-
sound signal by using Huffman codes, which are complex 
sequences that combine amplitude with phase (and thus 
frequency) coding. This paper extends the preliminary re-
sults obtained in [26], by

	 1) 	developing an accurate analytical model to guide the 
parameter optimization;

	 2) 	comparing the proposed scheme (and establishing 
connection) with state-of-the-art linear-FM codes 
and double-transmission complementary Golay 
codes;

	 3) 	simulating B-mode images that highlight the merits 
of the proposed approach in critical scenarios.

Capitalizing on the rigorous analytical model, this pa-
per discusses the design of any linear CE system, and clar-
ifies some misleading beliefs with respect to design criteria 
in frequency-dependent attenuating media. Specifically, 
Section II provides details of a typical CE architecture 
and describes the signal model, whereas Section III fo-
cuses on the analytical design of various coded waveforms. 
Section IV illustrates the Huffman coding theory and its 
optimization [27]. Then, Section V tests the proposed 
Huffman coding approach by means of typical ultrasound 
performance indices and compares the results with those 
of linear-FM [16] and complementary Golay coded sys-
tems [14]. To further corroborate the theoretical design, 
the overall performance of the proposed excitation scheme 
is evaluated for B-mode images in Section VI through the 
use of the Field II model [28]. Finally, conclusions and 
open research problems are summarized in Section VII.

II. System Architecture and Signal Model

Fig. 1 describes the block diagram of a CE ultrasound 
system that employs a phased-array probe with Q piezo-
electric elements.

CE is a transmission technique that exploits ultrasound 
pulses with a time-bandwidth product (TBP) greater 
than one. In medical ultrasound, the increase of TBP is 

obtained by an increase of the pulse duration, because the 
bandwidth of the voltage signal that drives the ultrasound 
transducer should match the limited ultrasound frequen-
cies the transducer can generate. Referring to Fig. 1, at 
every pulse repetition period, the code generator produces 
the discrete-time baseband signal

	 �s n ane j n[ ] = [ ] ,[ ]φ 	 (1)

where a[n] and ϕ[n] are the signal amplitude and the 
phase, respectively. Thus, if Ts is the sampling interval, 
the discrete-time RF signal s[n] = s(nTs) is simply ex-
pressed by

	 s n s ne nj f T n[ ] = { [ ] }, [0, ],2 0ℜ ∈� π s
s∆ 	 (2)

where f0 is the ultrasound center frequency, fs = 1/Ts is 
the signal generation frequency, Δs is the discrete-time 
duration of the CE pulse, and ℜ{ }x  is the real part of a 
complex number x. The analog signal s(t), obtained from 
s[n] by digital-to-analog conversion (DAC), is successively 
amplified through a high-voltage (HV) driver, whose aim 
is to adjust the signal dynamic range to that of the trans-
ducer.

At the receiver side, the ultrasound is converted into 
electric voltage by the piezoelectric element, whose output 
is processed and amplified by dedicated analog circuitry. 
In the presence of a single scatterer, whose round-trip dis-
tance from the transducer is 

�
r, the received signal r(t) is 

the time-shifted version of the convolution between the 
transmitted signal s(t) and the system impulse response 
h t rtot( , )

�
, as expressed by

	 r t s t h t tr( ) = ( ) ( , ) ( ),0− ∗ +τ µtot
�

	 (3)

where τ0 = 
�
r c/  is the round-trip delay when c is the ul-

trasound velocity in the tissue, ∗ is the convolution opera-
tor, and μ(t) represents the system noise. In [29], it is 
shown that the system impulse response h t rtot( , )

�
 depends 

on the temporal and spatial impulse responses of the 
transducer, ht(t) and h t rs( , )

�
, respectively, and on the tissue 

frequency-dependent attenuation h t ratt( , )
�

, as expressed by

Fig. 1. Block diagram of a coded-excitation ultrasound phased-array sys-
tem.
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	 h t h t h t h tr r rtot t s att( , ) = ( ) ( , ) ( , ).
� � �

∗ ∗ 	 (4)

In (4), h t ratt( , )
�

 is the inverse Fourier transform of H f ratt( , )
�

, 
whose dependence on the frequency f  is typically ex-
pressed by [29], [30]

	H f e e e er r r rf f j f j f
att

/ /b m( , ) = ( ) 2 ( ) 20
2� � � � �

− − − − +α β π τ τ β π βπ( ) ( ) rr ln f(2 ),π 	
		  (5)

where τb = 1/c is the bulk propagation delay per unit 
length, τm is the minimum phase delay factor, and α and β 
are the coefficients associated with the frequency-indepen-
dent and frequency-dependent attenuation, respectively. 
Specifically, τm = 20 has been used to fit the dispersion 
found in the tissue, as suggested by [30]. Instead of us-
ing (3), in [8], [16], and [31]–[33], it is suggested that the 
effect of a frequency-dependent attenuation can be ap-
proximated by a frequency down-shift of the transmitted 
signal, as expressed by

	 r t e s t e tr j f t
app

d( ) ( ) ( ),0
2 [ ( )]0≈ − +− − −α π ττ µ

�
	 (6)

where, for a transmitted pulse with relative bandwidth Br, 
the frequency shift fd induced by the frequency-dependent 
attenuation [8] is usually approximated by [32]

	 f B f rd r= .2
0
2β
�

	 (7)

Actually, this approximation, which neglects the com-
pression of the spectrum bandwidth, may be acceptable 
when the pulse waveform is almost Gaussian, and when 
the frequency-dependent attenuation is characterized by a 
quadratic law [34], [32]. This paper will clarify that this is 
not the case in general and that caution should be used in 
employing (6) for design purposes.

The discrete-time RF received signal r[n] = r(nTs) is 
obtained by analog-to-digital conversion (ADC), where, 
for simplicity of notation, it is assumed that the sampling 
interval Ts is the same one used in the generation process. 
Note that, the pulse compression block may be inserted ei-
ther after, or before, the beamforming block in the receive 
chain, as shown in Figs. 2 and 3, respectively. It is evident 
that the solution in Fig. 2 has a lower computational com-
plexity than the solution in Fig. 3.

However, the low-complexity configuration of Fig. 2, 
which employs a single decoding block instead of Q parallel 
pulse compressors, involves some distorting effects result-
ing from the dynamic focusing beamforming. These effects 
are investigated in [35] and detailed in [36], where possible 
solutions to limit such distortions are also suggested. To 
avoid constraints on the code lengths and on the TBP 
that would be more stringent than those already imposed 
by the dead-zone width (see [35] for further details), and 
to better highlight the role played by Huffman coding, 
this paper considers the more complex receive architecture 
shown in Fig. 3, leaving the study of the interplay with 
dynamic focusing effects for future investigations.

Using the approach described in Fig. 3, the discrete-
time RF signal r[n] may be processed to compress (de-
code) the effective impulse response, and consequently 
restore the spatial resolution. If not otherwise specified, 
Rxy[n] indicates the classical cross-correlation function of 
two generic digital waveforms x[n] and y[n]. Thus, the out-
put of the pulse compression block in Fig. 1 is obtained by 
cross-correlating the received waveform r[n] with a pulse 
compression waveform ψ[n], as expressed by

	
R n rm n m

n f nT nR R

r
m

r s r

ψ

ψ ψ

ψ

π

[ ] = [ ] [ ]

= [ ] 2 ( [ ]) .

=

0

−∞

+∞

∑ +

+ ∠� �cos( )

	 (8)

Eq. (8) can be summarized by its baseband counterpart

	 � � �R rn m n mr
m

ψ ψ[ ] = [ ] [ ],
=

*

−∞

+∞

∑ + 	 (9)

where �r n[ ] and �ψ[ ]n  are the complex envelope associated 
with the received signal r[n] = ℜ{ [ ] }2 0�r ne j f T nπ s  and the RF 
compression waveform ψ[n] = ℜ{ [ ] }2 0�ψ πne j f T ns , respectively. 
Eq. (9) depends on the transmitted signal s(t) by (3) and, 
in the absence of frequency-dependent attenuation (i.e., β 
= 0), the discrete-time received signal can be expressed by

	 r n e s n n nr[ ] = [ ] [ ],0
− − +α µ
�

	 (10)

i.e., an attenuated and delayed version of the transmitted 
signal s[n] with discrete-time delay n0 =  τ0fs , where  x  
represents the approximation of a number x to its nearest 
integer. Thus, the RF pulse compression output would be 
simply Rrψ[n] = e R n nr

s
− +α

ψ

�
[ ]0  + Rμψ[n].

Fig. 2. Low-complexity receive block diagram.

Fig. 3. High-complexity receive block diagram.
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However, when β ≠ 0, by means of the approximation 
in (6), the discrete-time received signal would become

	 r n e s n n e nr j f n n T
app

d s[ ] = [ ] [ ],0
2 ( )0− − −− +α π µ

�
	 (11)

which would give a pulse compression output Rrψ,app[n], 
expressed by

	

R n e sm n n me

R n

r
m

j f m n Tr
ψ

α π

µψ

ψ,app
d s

 

[ ] [ ] [ ]

[

=
0

2 ( )0≈ − +

+

−∞

+∞
− − −∑
�

]]

( , ) [ ].0≈ + +−e n n f R nr
s

α
ψ µψχ

�

d

			

		  (12)

In this view, and by means of the approximation in (6), to 
evaluate the coding performance in practical scenarios, 
some authors propose in [8], [16], [32], and [33] to not con-
sider the simple baseband correlation function �R nsψ[ ], but 
more generally, the baseband ambiguity function

	 � � �χ ψψ
π

s
m

j f mTn f m m nes( , ) = [ ] [ ] .
=

2
d

d s

−∞

+∞
∗ −∑ + 	 (13)

Indeed, �χ ψs n f( , )d  is a 2-D function that shows how the 
perceived cross-correlation function changes with a fre-
quency shift fd, and it subsumes the correlation function 
by �R nsψ[ ] = �χ ψs n( ,0).

Actually, the ambiguity function �χ ψs n f( , )d  can approxi-
mate the pulse compression output in the presence of fre-
quency-dependent attenuating media, only if the assump-
tions of Gaussian pulse-shaper, and quadratic 
frequency-dependent attenuation, hold true [34]. Indeed, 
the frequency-dependent attenuation introduces a higher 
attenuation of the higher frequencies, which may be inter-
preted as a virtual down-shift fd of the centrum frequency. 
Actually, although this virtual down-shift affects the spec-
trum magnitude, it is not generally the case for the spec-
trum phase of the transmitted signal and, consequently, 
such an approximation is still acceptable only when the 
spectrum phase is linear. Thus, the other constraint for 
the approximation to hold true is that the spectrum phase 
should be linear. For this reason, both in the case of fre-
quency and phase CE, the ambiguity function should not 
be used to design the code or to assess performance. This 
fact is also confirmed by the simulation results in Sec-
tion IV, which show that excitation codes characterized 
by very different ambiguity functions conversely provide 
almost the same pulse compression performance in fre-
quency-dependent attenuating media.

Thus, by means of (3), the discrete-time received signal 
r[n] is modeled by

	 r n s n n h n nr[ ] = [ ] ( , ) [ ],0− ∗ +tot
�

µ 	 (14)

where h n rtot( , )
�

 is the discrete-time counterpart of (4). The 
ambiguity function is fundamental to assess the ultra-

sound imaging performance in pulsed-Doppler applica-
tions. Indeed, the velocity vb of blood reflecting particles 
induces a Doppler shift fd, which depends on the ultra-
sound velocity vu, and on the angle θ between the direc-
tion of the flow and the ultrasound beam, by [32]

	 f f
v
vd

b

u
= 2 ( ).0 cos θ 	 (15)

In the absence of frequency-dependent attenuation, the 
presence of such a Doppler shift fd causes the pulse com-
pression output Rrψ[n] to be equal to the ambiguity func-
tion χsψ(n, fd).

III. Ultrasound Coded-Excitation

The design of a CE system consists of the design of a 
coding vector c = [c0, c1, …, cN] such that the baseband 
signal �s n[ ] associated with s(t) can be represented by a 
function of the coding sequence c, as expressed by

	 �s n f[ ] = ( ).s c 	 (16)

The proper selection of the code c and of the function fs(∙) 
has to be guided by a careful analysis of performance and 
hardware requirements in the perspective of clinical ap-
plications. For instance, in ultrasound B-mode imaging, 
the code performance is typically summarized by the com-
plex pulse compression output �R nrψ[ ]. More precisely, typ-
ical parameters are the axial resolution, which can be 
measured as the −20-dB width of the main lobe of �R nrψ[ ]  
[37], and the contrast resolution, which depends on the 
main-to-side lobe ratio (MSR) of �R nrψ[ ] , as well as on the 
SNR and the dynamic range [37]. When the compression 
waveform ψ[n] is equal to the transmitted signal s[n], the 
pulse compression is the classical matched-filter and thus 
it would be �R nrψ[ ] = �R nrs[ ]. Very frequently, the compres-
sion waveform ψ[n] is obtained by either a time or a fre-
quency windowing of the transmitted signal s[n], realizing 
a mismatched filtering, which is widely used in [16] and 
accurately explained in [38]. Although the SNR is ampli-
fied by a factor up to the TBP in CE, after decoding, the 
acoustic energy could remain partially distributed in time 
(and thus in space): this is indicated by an enlargement of 
the main lobe and by the generation of range lobes that 
reduce both the axial and the contrast resolution.

Together with the axial and the contrast resolutions, 
another important parameter to measure the quality of 
the performance is the SNR gain (GSNR), defined by [19]

	 GSNR
SNR
SNR

c= =
( [ ] )

( [ ] )

( [ ] )

0
2

2
0 0

max

max

max

ma
n

r

n

n
s sR n

R n

R nψ

ψψ σ

σ

xx
n

r sR n( [ ]) ,
0 0

			

		  (17)

where max
n
x n( [ ]) represents the largest element in x[n]. In 

(17), σ 2 is the system noise power, SNRc is the SNR guar-
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anteed by the CE technique in (16) with a pulse compres-
sion waveform ψ[n], whereas SNR0 is the SNR of the re-
ceived signal r0[n] that corresponds to the transmission 
(without CE) of a single pulse s0[n] = sin[2π f0n], with n ∈ 
[ , ],0  f Bs/  and where B is the pulse bandwidth. Moreover, 
to avoid performance degradation in the case of moving 
blood reflecting particles, it is necessary to design a code 
with a ridge-like ambiguity function. This is what hap-
pens, for instance, by using a linear-FM modulation 
(chirp), expressed by

	 s n
f
f n

B
f n nc( )[ ] cos , [ , ],+ = +







 ∈∆

∆
∆s

s s s
s/2 2 00 2π

π
			

		  (18)

which [see (16)], represents a non-linear coding at RF.

A. Linear Coded-Excitation

Indicating with {ci}i=0,…,N the entries (commonly 
called chips) of the code vector c and with δ [n] the Kro-
necker delta function, let us define ̂ ,cn[ ]  the normalized and 
upsampled (zero-filled) version of the code c with upsam-
pling factor M, as expressed by

	 ĉ n c c n iM
i

N

i[ ] =
1

[ ],
=0max
∑ −δ 	 (19)

where cmax = max .
n

ic{ }  Then, a linear coded excitation 

(LCE) is expressed by the convolution of ĉ n[ ] with the 
pulse shaping waveform p[n],

	 �s cn f n pn c c pn iML L

i

N

i
( ) ( )

=0

[ ] = ( ) = [ ] [ ] =
1

[ ],s
max

c ˆ ∗ −∑ 	 (20)

where p[n] = 0 when n ∉ [0, Δp − 1], and max
n
pn{ [ ]  = 1}. 

Eqs. (19) and (20) show that the discrete-time duration 
Δs depends on the length N + 1 of the code-sequence c, 
the upsampling factor M and the length Δp of p[n], as 
expressed by

	 ∆ ∆s p= .MN + 	 (21)

The code and pulse shaper normalization by cmax and 
max
n
pn{ [ ]} = 1, respectively, ensures that max

n
Ls n�( )[ ]{ } = 

1 when the pulse shaper duration satisfies Δp ≤ M. This 
is useful to compare different CE signal waveforms to take 
into account that, because of technological constraints, 
the input of each piezoelectric element cannot exceed a 
maximum value, equal to 1 without restriction of general-
ity. Note that a baseband signal waveform with a (maxi-
mum) constant envelope is highly desirable to maximize 
the energy of the transmitted RF signal, as happens for 
linear-FM in (18). Thus, to quantify the energy loss with 
respect to a constant amplitude code, it is common to 
define the code efficiency ηc as the energy ratio

	 ηc
ii

N c
N c

=
( 1)

,
2

=0
2

∑
+ max

	 (22)

which influences the GSNR achievable by a specific code. 
Analogously, it is possible to define the pulse shaper effi-
ciency ηp, and the overall signal waveform efficiency ηs. 
Note that ηs = ηcηp(N + 1)Δp/Δs, when Δp ≤ M; in gen-
eral, this is not the case when Δp > M, because of the 
overlap of the pulse shaper replicas in (19). Indeed, the 
pulses overlap generates the so called inter-symbol (chip) 
interference (ISI), which typically produces a higher max-
imum and higher variability of the signal envelope �s nL( )[ ]  
and, consequently, it contributes to a further efficiency 
reduction that depends jointly on the code chips {ci} and 
on the pulse shaper p[n]. By means of the discrete-time 
Fourier transform (DTFT), the transmitted signal spec-
trum �S fL( )( ) = �s n j fnTL

n
( )[ ] ( 2 )exp−=−∞

+∞∑ π s  is expressed by

	 �S f P f c e P f C MfL

i

N

i
j fT iM( )

=0

2( ) = ( ) = ( ) ( ).∑ − π s 	 (23)

Eq. (23) shows that the bandwidth of the complex enve-
lope �s nL( )[ ] is imposed by the pulse shaper spectrum P( f ) 
and, possibly, also by the code spectrum C( f ); moreover, 
higher interpolation factors correspond to higher selectiv-
ity of C(Mf ), if C( f ) shows some selectivity. In the ab-
sence of frequency-dependent medium attenuation (β = 
0), the baseband pulse compression output, for an LCE 
system [(19) and (20)] exploiting a matched filtering, is 
expressed by

	

� � ��

�

R R Rn e n n n

e
c

R

L L
s

i

N

r

r

rs ss

cc

( ) ( )
0

2
=0

2

[ ] = [ ] [ ]

= [

−

−

+ +

∑

α
µ

α

max
ii R n n NM iM nR s] [ ] [ ].0pp + + − + �µ

			

		  (24)

In (24), �R nsµ [ ] is associated with the complex envelope of 
the system noise μ [n], Rpp[n] = m p m= [ ]−∞

+∞ ∗∑  p[m + n] is 
the (non-causal) auto-correlation function of the pulse 
shaping waveform p[n], and Rcc[n] =  i

N
i i n Nc c=0∑ ∗
+ −  is the 

(causal) autocorrelation function of the coding sequence c, 
with energy Rcc[N], assuming that ci = 0 when i ∉ [0, N]. 
Moreover, in the presence of frequency-dependent attenu-
ation (β ≠ 0), the matched pulse compression output at 
the round-trip distance 

�
r  can be expressed by

	

� � � � �R R h r Rn n n n n

c
R

L L
s

i

N

rs ss tot
( ) ( )

0

2
=0

2

[ ] = [ ] ( , ) [ ]

=
1

+ ∗ +

∑

µ

max
ccc pp[ ] ( , ) [ ],0i R n n NM iM nr R

h s+ + − +
� �

µ

	

		  (25)

where R n r
hpp ( , )
�

 = R n h n rpp tot[ ] ( , )∗ �
�

, and h n r� �
tot( , ) is the 

discrete-time baseband complex counterpart of h t rtot( , )
�

. 
Thus, the effects of a frequency-dependent attenuation 
will be similar for any LCE system that employs the same 
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pulse shaping waveform p[n]. The LCE design (20) is in-
tended to obtain a coded waveform s[n] such that the cor-
relation function �R nrs[ ] in (25) [or (24)] approximates a 
single strong, sharp pulse. Thus, by means of (19), (20), 
(24), and (25), the first (and minimum) goal is to find a 
sequence with an autocorrelation function similar to a 
Kronecker delta (i.e., Rcc[n] ≈ Rcc[N ]δ [n − N]). This way, 
assuming the noise μ[n] and the signal s[n] are almost 
uncorrelated (i.e., �R nsµ [ ] � 0), by using (22), it is possible 
to conclude that

	 � �
R rn N R n n

hrs c pp[ ] ( 1) ( , ),0≈ + +η 	 (26)

and, consequently, the second goal is to design p[n] such 
that R n r

hpp ( , )
�

 meets the desired specifications. Eq. (25) 
demonstrates that, independently of the linear code c that 
is chosen, the frequency dependence of the attenuation 
affects the pulse compression output only through an 
equivalent pulse shaping ph[n], which is mismatched to the 
original p[n] employed at the compression stage. This fact 
can be further appreciated in the frequency domain, in 
which the compression output spectrum �S frs( ) = 

�R n j fnTn rs s[ ] ( 2 )= exp−−∞
+∞∑ π  is characterized by
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where �
�

H rftot( , ) is the DTFT of the baseband-equivalent 
system impulse response �

�
h rntot( , ), P( f ) is the DTFT of the 

pulse shaper p[n], and Scc(Mf ) = C Mf c( ) 2 2/ max represents 
the spectrum shaping imposed by the autocorrelation of 
the (zero-filled) code ˆ .cn[ ]  Eq. (27) highlights that a wider 
band of P( f ) and C(Mf ) could guarantee a sharper com-
pression output �R L nrs

( )[ ] (i.e., higher axial resolution), if the 
medium frequency response �

�
H rftot( , ) is not too frequency-

selective.

IV. Huffman Coding

In 1962, Huffman [39] presented a family of complex 
discrete sequences cH = [cH,0, cH,1, …, cH,N] with autocor-
relation functions R nc cH H

[ ] expressed by
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	 (28)

where X is a design parameter and, by means of (28), it 
corresponds to our desired Kronecker delta target, except 
for n = 0 and n = 2N. Huffman demonstrated that a se-

quence cH has the autocorrelation function expressed by 
(28), if its Z-transform

	 C z c z c z z
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i
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1∑ ∏− −− 	 (29)

has all the zeros {zk}k=1,…,N that are spaced at equal an-
gular intervals in the z-plane and lie in one of two origin-
centered circles, with radii X and 1/X, as expressed by
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		  (30)

Thus, the code MSR (MSRc) is expressed by [15]

	 MSRc
H H

H H

=
[ ]
[2 ] = .

R N
R N X Xc c

c c

N N− − 	 (31)

Summarizing, a Huffman sequence can be found by imple-
menting the following steps [40]:

	 1) 	Fix the code length to N +1.
	 2) 	Choose X that determines the radius of the two ori-

gin-centered circles.
	 3) 	For each zero zk, k = 1, …, N, choose which of the 

two origin-centered circles it belongs to.
	 4) 	Once all the N zeros {z1, …,​ zN} are chosen, compute 

the N + 1 polynomial coefficients {cH,0, …, cH,N}.

The third step of the described procedure highlights that, 
once the two parameters N and X are selected [e.g., by fix-
ing the maximum sequence length and the MSRc in (31)], 
there are 2N different sequences with the same autocorre-
lation function expressed by (28), each one characterized 
by its own efficiency ηc [see (22)].

Interestingly, although not widely acknowledged, Ack-
royd proposed in [27] a method to assign the appropriate 
circle to each zero to maximize the efficiency ηc of the 
code. This is done by approximating the phase constraint 
imposed by the Schroeder rule [41] as

	 arg argC C k N k k Nk = ( 1) , [0, ],0
2− + + ∈π ζ/ 	 (32)

where Ck = C(kfs/(N + 1)), and C = [C0, …, Ck, …, CN] 
is the (N + 1) discrete Fourier transform (DFT) of the se-
quence cH = [cH,0, …, cH,i, …, cH,N], and arg C0 and ζ can 
be chosen arbitrarily. In [27], Ackroyd proposed a method 
to approximate (32) for Huffman codes: if a zero zk is out-
side the unit circle in the z-plane (i.e., it belongs to the 
circle with radius 1/X, if 0 < X < 1), it will contribute to 
the phase spectrum by a smooth phase transition of +π 
centered at the digital frequency k/N; otherwise its contri-
bution will be a smooth phase transition of −π. Thus, an 
approximation of ±π to the desired phase spectrum can 
be represented by a piece-wise constant function with ±π 
steps centered at the zero location belonging either to the 
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circle outside or the circle inside the unit circle. Moreover, 
to avoid the numerical approximation errors associated to 
polynomial root-finding algorithms in (29), which may be 
significant for high values of the sequence length (N + 1), 
it is possible to implement step 4 by inverting (29) on the 
(N + 1) DFT grid,

	c N C e e i Ni
j N ik j N ik

k

N

H H
/ /

,
( ( )) ( ( ))( ) , , , ,=

+
= …− + +

=
∑1

1 02 1 2 1

0

π π 	

as suggested in [27] and better described in [42].

A. Huffman Coding Design Criteria for Medical 
Ultrasound Applications

Figs. 4 and 5 show the normalized code envelope 
c ciH H/

max,  and the ambiguity function �χss d( , )n f , respec-
tively, of a Huffman code-sequence with length N = 64, 
obtained by the Ackroyd technique when fs = 100 MHz, 
and M = 16. Although the procedure that has been used 
in this paper, and that was proposed in [27], consists of 
the search of the Huffman zero pattern that maximizes 
the code efficiency ηc, it also provides a sequence with a 
ridge-like ambiguity function. This makes the code robust 
to the Doppler frequency shifts in (15) introduced by the 
flow of blood particles, which is highly desirable in ultra-
sound pulsed-Doppler applications. The explanation for 
this property is that the Schroeder phase constraint in 
(32) is the phase of a chirp modulation (linear-FM), which 
is known to be characterized by a ridge-like ambiguity 
function. This fact is also evident from [25], in which the 
goal was exactly to find a Huffman zero-pattern that pro-
duces a sequence with an energy distribution that approx-
imates that of linear-FM. Also for this reason, linear-FM 
is a natural candidate for a performance comparison with 
the proposed Huffman CE, as will be detailed in Sec-
tion V.

Leveraging on the analytical framework derived in Sec-
tion III-A, it is also possible to easily describe the Huff-
man code effect on the pulse compression output in the 
presence of a frequency-dependent attenuating medium. 
Indeed, by means of (28), and ignoring the noise cross-
correlation contribution, (25) becomes
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where �r nH[ ] and �s nH[ ] are the received and transmitted sig-
nal associated to the Huffman sequence cH. Eq. (33) ex-
plains that when β = 0, i.e., when R n r

hpp ( , )
�

 = e R nr−α
�

pp[ ], 
and if the pulse shaper autocorrelation side lobes are 
properly designed, then the MSR of the overall system 

depends only on MSRc, which is imposed by the selection 
of the code length N + 1 and the parameter X by (31). 
Conversely, when β ≠ 0, it is important to consider the 
degradation on the overall MSR introduced by the side 
lobes of R n r

hpp ( , )
�

 [i.e., the mismatch imposed by �
�

h rntot( , )].
Moreover, for a fixed code efficiency ηc (maximized by the 
Ackroyd method), the axial resolution and the GSNR de-
pend on the width and the (maximum) amplitude, respec-
tively, of the autocorrelation function R n r

hpp ( , )
�

. For this 
reason, it is important to design the pulse shaper p[n] such 
that the practical bandwidth B of the coded waveform 
�s nH[ ], i.e., P( f ), is within the frequencies that the piezo-
electric transducer can achieve, and such that the correla-
tion function R n r

hpp ( , )
�

 has a narrow main lobe with a high 
peak and, possibly, low side lobes for the set of round-trip 
distances { }

�
r  of interest.

To confirm this analysis, this section shows the pulse 
compression performance of three Huffman waveforms; all 
of them were designed by the Ackroyd method in [27] us-
ing N = 48, M = 21, X = 0.825, fs = 100 MHz, but each 
of them uses an FIR pulse p[n] with a different value of 
the −3-dB bandwidth, B−3dB. Specifically, the three wave-

Fig. 4. Envelope of the Huffman code (N = 64) obtained by [27].

Fig. 5. Ambiguity function of the Huffman code (N = 64) obtained by 
[27].
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forms are expressed by p[n] = wcb[n]hbw[n], where hbw[n] 
is the FIR impulse response of an ideal brick-wall low-
pass filter with the same baseband cut-off frequency fc 
= 1.3 MHz, and different orders Δp − 1 = {54, 78, 100}; 
wcb[n] is the Chebyshev time-domain window [43], ex-
pressed by

	 w ncb
p

p
p
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where n ∈ [0, Δp], ε = cosh (1/Δp cosh−1(10γ ), γ = 5.25, 
F∆p

−1 is the Δp-point inverse DFT, and ν = 0, …, Δp is the 
discrete frequency index. The three Chebyshev windows 
with different lengths Δp = {55, 79, 101} induce, at RF, 
three different overall −3-dB bandwidths, B−3dB = 
{3.6, 2.7, 2.3} MHz, respectively. Note that, to contrast the 
tails overlapping of the spectrum �S fL( )( ) induced by the 
RF modulation at f0 = 4 MHz, all three baseband brick-
wall filters hbw[n] have been designed with frequency side 
lobes at least −105 dB from the main lobe peak, when |  f  | 
> 3 MHz.

In the simulation, the transducer spatial impulse re-
sponse h t rs( , )

�
 in (4) is neglected, and the presence of a 

frequency-dependent attenuating medium is considered by 
means of (5), with an attenuation coefficient β = 0.7 dB/
(MHz∙cm) that, according to [44], can adequately model 
liver behavior. The transducer is modeled by the frequen-
cy response shown in Fig. 6, which corresponds to the 
same discrete-time temporal impulse response ht[n] = 
ht(nTs) used in [8] and [16], and it was obtained by ex-
perimental measures on a mechanically rotating transduc-
er with central frequency fo = 4 MHz and bandwidth B = 
2.6 MHz. Moreover, by means of (5), Fig. 6 also shows the 
normalized frequency response H f Hr ratt att/( , ) (0, )

� �
 of 

the attenuating medium for a set of distances 
�
r /2 = 

{5, 15, 30} cm.
Fig. 7 shows the GSNR performance for the three dif-

ferent pulse shapers, whereas Fig. 8 shows the pulse com-
pression output when either β = 0 or β = 0.7 dB/
(MHz∙cm) at two scattering distances 

�
r /2 = 15 cm and �

r /2 = 30 cm. The two figures highlight that the pulse 
shaping waveform p[n] = wcb[n]hbw[n] with the widest 
B−3dB bandwidth of P( f ) provides the best GSNR at high 
scattering distances, and the worst GSNR at short dis-
tances; moreover, Fig. 8(a) shows that, in frequency-de-
pendent attenuating tissues, the pulse shaper with widest 
bandwidth has worse contrast resolution, caused by the 
R n r

hpp ( , )
�

 side lobes. This phenomenon, which is also mod-
erately observable in Fig. 8 when β = 0, produces a spec-
trum floor of spurious components on the RF signal. These 
undesired components, which increase with the bandwidth 
B−3dB of P( f ), are also present at low frequencies, where 
the frequencies are less attenuated in a frequency-depen-
dent attenuating tissue (see Fig. 6). Thus, for increasing 
propagation distances in the tissue, these spurious low-
frequencies become increasingly more significant with re-
spect to the RF spectrum of the desired pulse compression 

output at 4.0 MHz. These spurious low-frequencies are 
responsible for a higher side lobe floor in the time domain.

Summarizing, in the absence of frequency-dependent 
attenuation, and with the Ackroyd design, (properly de-
signed) pulse shapers with wider bandwidth provide only 
better axial resolution, whereas the MSR and GSNR de-
pend on the specific code that is used. However, in the 
presence of frequency-dependent attenuation the MSR 
and GSNR are also influenced by the bandwidth of the 
pulse shaping waveform through the correlation function 
R n r

hpp ( , )
�

 in (33). Thus, taking into account the penetra-
tion depth of the diagnostic region of interest, the pulse 
shaping waveform must be designed by trading high ro-
bustness to frequency-dependent attenuating media, for 
both MSR and GSNR. For instance, the pulse shaping 
waveform with the widest bandwidth, i.e., B−3dB = 

Fig. 6. Frequency response of the mechanically rotating transducer in [8] 
and [16]. Dashed lines: the normalized frequency response of the medium 
at three different distances 

�
r /2 = {5, 15, 30} cm.

Fig. 7. Signal-to-noise ratio gain (GSNR) performance for three different 
−3-dB bandwidth pulse shaping designs.
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3.6 MHz, must be chosen to trade contrast resolution for 
higher GSNR and penetration depth. On the contrary, the 
smallest bandwidth, i.e., B−3dB = 2.3 MHz, must be cho-
sen to trade GSNR for maximum axial and contrast reso-
lution (MSR).

Another important aspect is that the upsampling fac-
tor M of (19) affects both the signal duration ΔsTs [see 
(21)] and the side lobe distance, as summarized by (33). 
Although a high side lobe separation in time is not par-
ticularly useful in medical applications, the maximum sig-
nal duration ΔsTs is typically constrained in ultrasound 
systems, because of the damping effect of the piezoelectric 
elements, and also to avoid a too-large dead-zone in the 
final B-mode image. For this reason, when Δp ≪ MN 
in (21), because the transmitted signal length T = ΔsTs 
≈ MNTs is fixed by the ultrasound transducer, a choice 
of the parameter M (or N) would correspond to fix the 
other parameter N (or M) by N = Tfs/M (or M = Tfs/N). 
To optimize the choice of the pair of parameters (M, N) 
achievable with the CE technique, it is possible to define 
two different criteria:

	 1) 	the ISI-free criterion (IFC);
	 2) 	the exhaustive-optimal criterion (EOC).

The IFC is based on the observation that the most sig-
nificative samples of a pulse shaping waveform p[n] with 
bandwidth B are approximately equal to  f Bs/  and thus, 
to avoid ISI in �s nH[ ], it is possible to choose M ≈   f Bs/ , as 
proposed in [45]. However, this simple criterion does not 
take into account other significant aspects, as will be clar-
ified. Indeed, for a fixed signal duration ΔsTs, a smaller 
value of M would allow the use of higher values of N and, 
thus, a longer sequence cH that, in general, gives better 
chances to find a sequence with high efficiency ηc. On the 
other hand, the EOC determines the best choice of M by 
evaluating the GSNR for all of the possible values of N 
such that M = Tfs/N and, thus, it jointly considers the 
code efficiency ηc in (22) and the overall signal efficiency 
ηs. To clarify this point, Figs. 9 and 10 compare, respec-
tively, the baseband magnitude �s nH[ ]  and the auto-corre-
lation magnitude �R ns sH H

[ ]  for different values of M and N, 
with MSRc = 80 dB, fs = 100 MHz, T ≈ 10 μs, the same 

Fig. 8. Pulse compression output for three pulse shapers (in each row): (a) B−3dB = 3.6 MHz; (b) B−3dB = 2.7 MHz; and (c) B−3dB = 2.3 MHz.
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Chebyshev pulse shaping waveform p[n] = wcb[n]hbw[n], 
and Huffman codes cH designed by the Ackroyd method. 
Specifically, from Figs. 9 and 10, it is possible to under-
stand that, for N = 31, a smaller value of M produces a 
shorter signal �s nH[ ], but also a smaller main lobe ampli-
tude that induces a worse GSNR. Moreover, by comparing 
the signals in Fig. 9(a) and 9(c) it is evident that, al-
though they have the same duration Δs = NM + Δp (21), 
the one in Fig. 9(c) provides a higher main lobe amplitude 
(better GSNR), as shown in Fig. 10.

Fig. 11 shows the main lobe amplitude (i.e., the signal 
energy) of the autocorrelation �R ns sH H

[ ] using the Ackroyd 
method, for different values of N when T = 10 μs, fs = 
100 MHz, MSRc = 80 dB, and M =  Tf Ns/ , for all three 

pulse shaping functions used for Figs. 7 and 8. The figure 
highlights how the EOC would improve the GSNR perfor-
mance with respect to the IFC; however, how the ISI af-
fects the autocorrelation main lobe amplitude depends on 
the specific code-sequence, cH.

Fig. 12 shows the code ambiguity function and the 
pulse compression output at a scattering distance 

�
r /2 = 

30 cm, with β = 0.7 dB/(MHz∙cm), for two different 
transmitted waveforms obtained by Huffman coding with 
X = 0.825 and (M, N) = (21, 48). Specifically, for the first 
waveform, the Huffman code is obtained by the Ackroyd 
procedure described in [27], whereas the second one is 
obtained by a random choice of the zero locations on the 
two origin-centered circles with radius X and 1/X. Fig. 
12(a) shows that, because it uses the Ackroyd design, the 
first waveform provides a quasi-ridge-like ambiguity func-
tion whereas the second signal, because of the random 
choice of the zeros location, exhibits in Fig. 12(c) an am-
biguity function with a quasi-thumbtack shape. On the 
contrary, Figs. 12(b) and 12(d) show that the (peak-nor-
malized) pulse compression output �R nrϕ[ ] = �χ ϕr n( ,0) of the 
two signals assume similar values (also in the presence of 
frequency-dependent attenuating media), except for some 
slight differences of the shape (i.e., not of the maximum 
amplitudes) of the side lobes. This confirms that the am-
biguity function does not affect the pulse compression per-
formance of the overall system and should not be used as 
a design criterion for CE techniques, unless designing for 
pulse-Doppler applications.

V. Coding Performance

This section, by focusing only on the correlation re-
sults, evaluates the output of the matched filter (ψ[n] = 
sH[n]) for the proposed Huffman waveform design. The 
next section will more practically evaluate the system per-
formance by taking into account the tissue attenuation, as 

Fig. 9. (a)–(c) Complex envelopes of the transmitted signal s[n] for dif-
ferent values of N and M.

Fig. 10. (a) Baseband auto-correlation functions for different values of N 
and M. (b) Magnification and detail of the main lobe.

Fig. 11. Main lobe amplitude of �Rs sH H
 for different values of N (T = 

10 μs, fs = 100 MHz, MSRc = 80 dB, M =   Tf Ns/ , Ackroyd design [27]).
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well as the transducer geometry and a specific beamform-
ing technique. The pulse shaping waveform p[n] = hbw[n]
wcb[n] has been designed as a 79-taps brick-wall FIR filter 
hbw[n] with B−3dB = 2.7 MHz, and a Chebyshev window 
wcb[n] employing γ = 5.25 [see the definition of ε in (34)]. 
As suggested by the EOC criterion (see Fig. 11), it has 
been chosen a Huffman code with length N = 48 and 
upsampling factor M= 21, which corresponds to a signal 
duration T ≈ 10 μs at fs = 100 MHz. Note that the 
upsampling factor M has little influence on the signal 
bandwidth when the code exhibits quasi-Kronecker-delta 
autocorrelation [see (23)], as for Huffman codes. The Huff-
man code has been generated by the Ackroyd approach 
[27], setting in (31) the radius X that guarantees MSRc = 
80 dB. The linear-FM code proposed in [16] is considered 
for the first comparison, where, to reduce the Fresnel dis-
tortion, the signal has a bandwidth of 7.8 MHz before the 
transducer, and it is tapered by a Tukey window. More-
over, to minimize the main lobe width for a specified con-
stant side lobe level, as deeply investigated in [38], the 
linear-FM system has been optimized in [16] employing a 
mismatched pulse compression waveform ψ[n] = s(c)[n]
wdc[n], where wdc[n] is a Dolph–Chebyshev time-domain 
window. This way, the linear-FM coding is characterized 
by a higher MSR and it becomes more suited to medical 
applications. For a second challenging comparison, this 

section employs the double-transmission complementary 
Golay approach in [14], which is an optimal solution (that 
penalizes the frame rate), because a complementary Golay 
code, cG, can guarantee the ideal autocorrelation function 
R nc cG G

[ ] = R N n Nc cG G
[ ] [ ]δ −  in (25). Specifically, the com-

plementary Golay code has been generated as in [46], by 
using a matched filtering pulse compression and a trans-
mitted signal s[n] with duration T = 10 μs. The signal in 
[46], characterized by a constant amplitude, is very easy to 
generate and it can be expressed by (20) using N = 20, M 
= 50, and a rectangular pulse shaping waveform p[n] = 1, 
n ∈ [0, M − 1], as in [16].

Note that, for this classical Golay CE formulation, the 
value of M influences the signal bandwidth through the 
duration of the rectangular pulse shape p[n]. Specifically, 
P( f ) is a sinc(∙) function with first zero location at fs/M = 
2 MHz and B−3dB � 1.78 MHz. Thus, because of its lower 
frequency support, taking into account (27) and (25), this 
code will exhibit a wider main-pulse compression output 
(worsen axial resolution) with respect to both the pro-
posed Huffman code and the linear-FM. To consider a 
comparable bandwidth B−3dB, the value of M should be 
reduced approximately by a factor of three (e.g., M = 17).

In this view, and also to better highlight how the pulse 
shaping waveform p[n] affects the pulse compression, the 
third comparison considers the performance of comple-

Fig. 12. Ambiguity function and pulse compression output comparison for different Huffman codes: (a) Ackroyd [27] design. (b) Random choice of 
the zeros in the two circles of (30).
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mentary Golay codes using N = 26 and M = 38 according 
to the IFC criterion, and the same pulse shaping waveform 
p[n] = wcb[n]hbw[n] employed for the Huffman code, which 
also imposes the same bandwidth. However, note that 
such a pulse shaper sacrifices the easy generation proper-
ties of classical Golay coding approaches by introducing a 
non-constant envelope.

Fig. 13 compares the baseband matched filter output 
�R nr sH H

[ ] of the Huffman code, with the mismatched filter 
output of a 10-μs linear-FM code [16] and with the two 
double-transmission Golay approaches described previ-
ously, in the absence [Fig. 13(a)] and in the presence [Fig. 
13(b)] of the transducer impulse response ht[n].

The transducer has been modeled with the same tem-
poral impulse response ht[n] employed in [8], [16] with 
central frequency equal to 4 MHz and 65% of fractional-
bandwidth, as shown in Fig. 6. As is well known, Fig. 
13 highlights that the Golay approaches provide an MSR 
that differs from the theoretical values +∞, only because 
of numerical approximation errors. Moreover, although 
they are characterized by the best GSNR, actually 3 dB 
of their GSNR gain is only due to the double transmission, 
with duration 2T. Specifically, rectangular pulse shaped 
Golay (R-Golay) provides a very high GSNR, but also 
a noticeably worse axial resolution. On the contrary, the 
Chebyshev-shaped Golay (C-Golay) approach provides 
quite the same GSNR of the Huffmann codes, plus a 3 dB 
gain obtained by the double transmission; moreover, it 
is characterized by exactly the same axial resolution of 
the Huffman technique, as predicted by (25) and (28) for 
quasi-ideal LCE. For figure clarity, the C-Golay plot is 
represented only by square-markers, because, as highlight-
ed by (25), C-Golay and Huffman codes have an identi-
cal main lobe because they employ the same pulse-shaper 
p[n]. Huffman coding has, by design, MSR = 80 dB, which 
is much better than the MSR = 65 dB of the tapered 
linear-FM (TLF) approach, whereas it is characterized by 
approximately the same GSNR and by a small penalty 
in terms of axial resolution. This fact is summarized in 
Table I, where the −20-dB axial resolution has been mea-
sured according to the approach in [37]. Note that the bet-
ter performance provided by the Golay coding scheme in 
the absence of frequency-dependent attenuation requires 
a double transmission that reduces by 50% the B-mode 
frame rate and may also induce motion artifacts.

Fig. 13 plots the baseband results obtained using the 
complex envelope �s nH[ ], although Fig. 1 shows that, to 
generate the ultrasound signal s(t), the complex envelope 

signal �s n[ ] must first be modulated at RF and then digital-
to-analog converted. In this view, Figs. 14 and 15 show the 
pulse compression outputs of the Huffman and the Cheby-
shev-shaped Golay coding, respectively, in the presence of 
RF modulation, quantization (6-, 8- and 12-bits), and em-
ploying the same transducer used for Fig. 13(b). For figure 
clarity, TLF and the rectangular-shaped Golay quantiza-
tion are not illustrated; indeed, modulation and quantiza-
tion do not significantly degrade the TLF pulse compres-
sion performance, and rectangular-shaped Golay codes are 
very easily generated without any performance loss.

Figs. 14 and 15 also highlight that RF modulation 
slightly degrades the pulse compression because of the 
aliasing of the frequency side lobes of the pulse-shaper 
frequency response. Moreover, although 12-bit and 8-bit 
quantization do not significantly degrade the pulse com-
pression performance, providing an MSR almost equal 
to 80 dB, as in the baseband Huffman code design, 6-bit 
quantization induces a pronounced degradation with an 
MSR performance similar to TLF.

Note that for LCE approaches exploiting matched 
pulse compression, the axial resolution depends only on 
the pulse shaping waveform p[n] in (20), whereas for the 
TLF, it mostly depends on the mismatched pulse com-
pression waveform ψC[n]. Thus, the results in Table I refer 
to the mismatched pulse compression waveform ψC[n] = 

Fig. 13. Pulse compression performance (a) in the absence and (b) in the 
presence of the transducer impulse response ht[n].

TABLE I. Signal-to-Noise Ratio Gain (GSNR), Main-to-Side Lobe Ratio (MSR),  
and Axial Resolution Comparison for Different Coded-Excitation Techniques  

[Results Extracted From Fig. 13(b)]. 

Huffman
Tapered linear 

FM [32]
Golay with 
prect[n] [10]

Golay with 
prect[n]

GSNR (dB) 10.0 10.6 17.7 13.3
MSR (dB) 80 65 ∞ ∞
Axial resolution (mm) 1.3 1.2 1.7 1.3
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s(c)[n]wdc[n] that Misaridis [16] showed to be the appropri-
ate trade-off between axial resolution and side lobe levels 
(i.e., MSR). However, to be as fair as possible, Table II 
also shows the TLF performance for different frequency 
side lobes attenuation of the Dolph–Chebyshev (DC) win-
dow wdc[n].

For instance, by fixing the same axial resolution of 
1.3 mm that is obtained for Huffman CE, Table II shows 
that it is possible in this way to slightly improve the MSR 
to 70 dB, which is, however, still well below the 80 dB 
that was imposed by design for the Huffman CE.

VI. Ultrasound Imaging With Huffman Coding

Coded-excitation techniques can be effectively com-
pared by a B-mode imaging approach. To this end, ul-
trasound imaging simulations were performed by exploit-
ing the same equation used by Field II [28] to model the 
probe, the tissue, and the transmission technique. As in 
Section V, each piezoelectric element is modeled by a fil-
ter with center nominal frequency f0 = 4 MHz, fractional-
bandwidth equal to 65%, and temporal impulse response 
equal to that one used in Section V.

Fig. 16 shows the GSNR performance in a frequency-
dependent attenuating medium [β = 0.7 dB/(MHz∙cm)] 
for Huffman, TLF, and Golay coding for different scatter-

ing distances 
�
r /2. Specifically, the Huffman approach 

employs (M, N) = (21, 48) and a Chebyshev pulse shaping 
waveform p[n] with B−3dB = 2.7 MHz. This way, the Huff-
man GSNR performance shown in Fig. 16 are the same 
that are displayed with square markers in Fig. 7. More-
over, the Golay approach employs both (M, N) = (50, 20) 
and (M, N) = (38, 26) with rectangular and Chebyshev 
shaping, respectively, as detailed in Section IV. Fig. 16 
highlights that, except for the difference of 3 dB caused by 
the double transmission, the Huffman and the C-Golay 
approaches have quite the same GSNR performance. This 
confirms the analytical derivations in Section III, which 
has shown that the frequency-dependence of the attenua-
tion affects the system performance only through the 
equivalent pulse shaping function ph[n], independently of 
the specific linear code that is used. Moreover, Fig. 16 also 
highlights that the R-Golay technique gives the best re-
sults in terms of GSNR, but, as it will be clarified in the 
following simulation results, in some circumstances it can-

Fig. 14. Pulse compression performance for RF Huffman transmitted 
signals with quantization.

Fig. 15. Pulse compression performance for RF Chebyshev-shaped Golay 
transmitted signals with quantization.

TABLE II. Axial and Contrast Resolution of Tapered Linear 
FM [16] With Different Mismatching Windows. 

wdc[n] 
frequency 
side lobe

MSR 
(dB)

Axial 
resolution 

(mm)

−10 55 1.0
−60 65 1.2
−100 70 1.3
−200 70 1.6

MSR = Main-to-side lobe ratio.
Fig. 16. Signal-to-noise ratio gain (GSNR) performance comparison in 
frequency-dependent attenuating medium.
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not be applied because of the low MSR performance it 
provides. Fig. 16 shows that the gain in GSNR of TLF 
with respect to Huffman coding can reach values of around 
7 dB for depth ranges between 20 and 30 cm: this fact 
could make TLF more attractive than Huffman coding in 
very deep and highly noisy scenarios, especially when the 
worse performance in MSR is not an issue.

Figs. 17(a)–17(d) show the compressed central RF-line 
in a frequency-flat attenuating medium and in the same 
frequency-dependent attenuating medium for Huffman, 
TLF, R-Golay, and C-Golay coding, respectively. Spe-
cifically, eight point-scatterers with equal scattering am-
plitude have been fixed along the axial direction, spaced 
20 mm from each other, at absolute distances ranging 
from 60 to 200 mm from the transducer, which is modeled 
as a 32-element phased-array probe. Fixed-focus trans-
mission beamforming at a distance of 100 mm together 
with dynamic receive beamforming [47] is employed. Figs. 
17(a)–17(d) show that Huffman and C-Golay coding out-
perform all of the other techniques in practical scenarios 
characterized by frequency-dependent attenuating media.

This can be better appreciated in Fig. 18, which shows 
the normalized pulse compression output for the four ap-
proaches compared in Figs. 17(a)–17(d), in the presence 
of a single point-scatterer at 150 mm depth. Fig. 18 high-
lights that both the TLF [Fig. 18(a)] and the R-Golay 
[Fig. 18(b)] codings are characterized by pronounced side 
lobes near the main lobe, which is also visibly enlarged. 
On the contrary, the practical design of the pulse shaping 
waveform p[n], combined with the almost ideal property 

(i.e., quasi-Kronecker delta, see Section III) of the codes 
autocorrelation Rcc[n], allows the Huffman [Fig. 18(d)] 
and the C-Golay [Fig. 18(c)] techniques to obtain the best 
MSRs. Specifically, at a distance of 150 mm, they still 
guarantee MSR ≈ 65 and 70 dB, respectively, whereas the 

Fig. 17. Compressed central RF-line in (left) frequency-independent and (right) β = 0.7 dB/(MHz∙cm) frequency-dependent attenuating medium for 
(a) Huffman coding, (b) rectangular-shaped Golay coding, (c) tapered linear-FM coding, and (d) Chebyshev-shaped Golay coding.

Fig. 18. Normalized compressed central RF-line comparison in β = 
0.7 dB/(MHz∙cm) attenuating medium in the presence of a point scat-
terer at 150 mm distance. (a) Tapered linear FM; (b) rectangular-shaped 
Golay; (c) Chebyshev-shaped Golay; and (d) Huffman.
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TLF and the rectangular-shaped Golay coding schemes 
give MSR ≈ 35 and 48 dB, respectively.

To better highlight the potential advantage provided 
by Huffman CE, Figs. 19–22 show the zoomed view of B-
mode images, obtained with the same Field II parameters 
used for Fig. 17, with a fixed focus at 100 mm and placing 
four points scatterers close to each other, at distances 149, 
150, 150.7, and 151.7 mm along the axial direction from 
the transducer. The scattering amplitudes were chosen 
equal to 0.018, 1, 1, and 0.018 for the increasing distances. 
This implies that a system with at least 35 dB of dy-
namic range is needed to correctly show all the scatterers. 
Note that, without any synthetic dynamic focusing on the 
transmit side, each point scatterer is perceived as an arc. 
This effect, which is the same for all of the CE techniques 
and affects only the lateral resolution, is also useful to 
better appreciate the differences among different codes in 

a point-scatterer environment. All of the B-mode images 
have been produced by a standard log-compression, with 
a dynamic range of 70 dB, matched to the 128 levels of 
the gray color bar shown on the right. All of the images 
are affected by the same white noise, added at the re-
ceiver side with a power such that a single element of the 
array (without beamforming gain) perceives an SNR = 
−30 dB when there is a single scatterer at 150 mm. Fig. 
23 shows the B-mode image obtained without using any 
coding excitation scheme, and it can be observed that all 
of the CE techniques are capable of reducing it, propor-
tionally to their GSNR shown in Fig. 16. Moreover, the 
fixed-focus B-mode images highlight that, although all the 
CE techniques improve the image quality with respect to 
the single-pulse transmission, by Huffman and C-Golay 
coding it is possible to better distinguish the two low re-
flecting scatterers. Conversely, in the two images obtained 

Fig. 19. B-mode image for the proposed Huffman technique.

Fig. 20. B-mode image for the tapered linear-FM technique.

Fig. 21. B-mode image for the rectangular-shaped Golay technique.

Fig. 22. B-mode image for the Chebyshev-shaped Golay technique.
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with R-Golay and TLF, the two points with lower scatter-
ing amplitudes are not easily distinguishable because they 
have worse MSRs, as shown in Fig. 18. Moreover, in the 
R-Golay image of Fig. 21, the two strong scatterers are 
not distinguishable because of the reduced axial resolu-
tion associated with the main lobe enlargement caused 
by the frequency-dependent attenuation. This effect also 
partially degrades the TLF coding performance in Fig. 20, 
although to a much lower extent.

By visual inspection of all of the simulation results 
shown in this paper, it is possible to conclude that the 
Huffman technique could also be reasonably preferable to 
the Chebyshev-shaped Golay approach, because it does 
not require a double transmission and, consequently, it 
does not suffer from either a frame-rate reduction or mo-
tion artifacts. The Huffman code may also be preferable 

because it is very robust to frequency-shift induced by 
moving flow of blood particles in pulse-Doppler applica-
tions; this Doppler resistance is due to its ridge-like am-
biguity function, shown in Fig. 24, which also highlights 
that standard complementary Golay codes are character-
ized by a nonridge-like ambiguity function.

VII. Conclusions and Future Work

This paper has proposed a new approach for coded-ex-
citation in medical ultrasound systems based on the Huff-
man coding theory [27], and an accurate analytical model 
to guide a generic linear coded-excitation optimization. 
The transmitted Huffman sequence is designed by a tech-
nique that maximizes the final GSNR and it also provides 
a good (i.e., a ridge) ambiguity function, which ensures ro-
bustness of the system to frequency-shift induced in pulse-
Doppler applications. Pulse compression is performed by 
a matched filtering approach and, notably, it provides 
superior contrast resolution in almost all conditions; spe-
cifically, in the presence of a single scatterer at 150 mm 
distance in a frequency-dependent attenuation environ-
ment, the MSR is roughly 30 and 17 dB better than what 
it is obtained by the tapered linear-FM proposed in [16] 
and the (double-transmission) rectangular-shaped Golay 
coding suggested in [14], respectively. According to the 
obtained results, the proposed coding may have a consid-
erable impact on CE ultrasound; because this approach 
has not been widely investigated in the past, there is the 
potential for further research and optimization. Thus, it 
can be reasonably expected that, through future investi-
gations, the proposed approach could further outperform 
currently employed CE schemes. Future work could focus 
on a procedure to further optimize the choice of the zeros 
of the Huffman sequence to maximize the sequence effi-

Fig. 23. B-mode image without any coded-excitation technique. 

Fig. 24. Comparison of (left) Huffman and (right) Golay code ambiguity functions.
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ciency and to fulfill a maximum ISI constraint. Topics for 
future research include mismatched filtering approaches, 
dynamic focusing, and time-gain-compensation effects for 
single-pulse compression after the beamformer, as well as 
experimental tests on real clinical ultrasound scanners to 
validate the proposed technique.
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