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BER of OFDM Systems Impaired by Carrier
Frequency Offset in Multipath Fading Channels

Luca Rugini, Member, IEEE, and Paolo Banelli, Member, IEEE

Abstract—We introduce an analytical approach to evaluate the
error probability of orthogonal frequency-division-multiplexing
(OFDM) systems subject to carrier frequency offset (CFO) in
frequency-selective channels, characterized by Rayleigh or Rician
fading. By properly exploiting the Gaussian approximation of the
intercarrier interference (ICI), we show that the bit-error rate
(BER) for an uncoded OFDM system with quadrature amplitude
modulation (QAM) can be expressed by the sum of a few inte-
grals, whose number depends on the constellation size. Each
integral can be evaluated numerically, or, in Rayleigh fading,
by using a series expansion that involves generalized hypergeo-
metric functions. Simulation results illustrate that the theoretical
analysis is quite accurate, especially for Rayleigh channels, and
also with nonlinear amplifiers.

Index Terms—Carrier frequency offset (CFO), fading channels,
nonlinear amplifiers, orthogonal frequency-division multiplexing
(OFDM).

I. INTRODUCTION

O RTHOGONAL frequency-division multiplexing (OFDM)
is a technique widely used for wireless applications [1].

Due to its multicarrier feature, OFDM systems are more sen-
sitive than single-carrier systems to frequency synchronization
errors [2]. Indeed, the carrier frequency offset (CFO), which
models the frequency mismatch between the transmitter and
receiver oscillators, gives rise to intercarrier interference (ICI),
thereby destroying the orthogonality of the OFDM data.

In linearly modulated OFDM systems, the performance
degradation caused by the CFO, as well as the ICI due to
channel Doppler spread, is often evaluated in terms of signal-to-
interference-plus-noise ratio (SINR) or signal-to-interference
ratio (SIR) [2]–[6]. Although such an analysis has the merit
of being mathematically simple, it is obvious that the bit-error
rate (BER) or symbol-error rate (SER) analysis characterizes
the performance degradation more accurately. In [7], Keller and
Hanzo use the Gaussian approximation of the ICI in order to
obtain an analytical BER expression in additive white Gaussian
noise (AWGN) channels. However, they show by simulation
that such an approximation is highly pessimistic when the BER
is small, and hence, it should be used only at low signal-to-noise
ratio (SNR). A more accurate BER expression that exploits the
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moments of the ICI distribution has been proposed by Zhao
and Häggman in [8]. Moreover, using the characteristic func-
tion of the ICI, Sathananthan and Tellambura derived the exact
SER in AWGN channels [9].

The main weakness of [7]–[9] is that they consider the
CFO effects only in AWGN channels, whereas OFDM systems
are usually designed to cope with multipath channels [1]. On
this subject, by using the Gaussian approximation of the ICI,
Cheon and Hong proposed a BER analysis in Rayleigh fading
channels, incorporating both the effects of the CFO and of the
channel-estimation errors [10]. The Gaussian approximation of
the ICI has been exploited also by Russell and Stüber in [11] to
evaluate the BER in the presence of channel Doppler spread.

In this paper, we present a BER analysis when the CFO
impairs an OFDM system in frequency-selective Rician or
Rayleigh fading channels. Our approach consists of three steps.
First, we evaluate the SINR conditioned on a single channel
realization. We show that the conditional SINR, which is in gen-
eral different from the average SINR evaluated in [2]–[4] and
[6], strongly depends on the channel realization. Second, we
exploit the Gaussian approximation of the ICI to approximate
the BER conditioned on the given channel realization. Different
from [10], we assume the ICI power as channel dependent.
Third, we average the conditional BER over the fading statis-
tics. Our analysis shows that the BER for an uncoded OFDM
system with quadrature amplitude modulation (QAM) can be
obtained as the sum of a few integrals, whose number depends
on the constellation size. Each integral can be computed by nu-
merical techniques, or, in Rayleigh fading, replaced by a series
expansion that involves generalized hypergeometric functions.
Simulation results in wireless local area network (WLAN)
scenarios evidence that, different from the AWGN case [7], for
frequency-selective channels, the Gaussian approximation of
the ICI is quite appropriate. In particular, for Rayleigh channels,
our BER analysis is more accurate than in [10].

The paper is organized as follows. Section II contains the
OFDM system model with CFO, while in Section III, we
derive the BER expressions for Rayleigh and Rician fading
channels. Section IV extends the analysis to take into ac-
count the possible presence of nonlinear distortions introduced
by the amplifier at the transmitter side. In Section V, we validate
the theoretical analysis by means of simulation results, while
Section VI concludes the paper.

II. OFDM SYSTEM MODEL

Firstly, we introduce some basic notations. We use lower
(upper) bold face letters to denote column vectors (matrices),
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superscripts ∗, T, and H to represent complex conjugate, trans-
pose, and Hermitian operators, respectively. We employ E{·}
to represent the statistical expectation, Re[·] to indicate the real
part of a complex number, max{a1, . . . , aN} to identify the
maximum among the real numbers a1, . . . , aN , and �x� and
�x� to denote the smallest integer greater than or equal to x,
and the greatest integer smaller than or equal to x, respectively.
The Q-function is defined as Q(x) = (1/

√
2π)

∫ +∞
x e−ν2/2dν,

0M×N is the M × N all-zero matrix, 1N is the N -dimensional
all-one column vector, and IN is the N × N identity matrix. We
define [A]m,n as the (m,n)th entry of the matrix A, [a]n as the
nth entry of the column vector a, (a)mod N as the remainder
after division of a by N , and diag(a) as the diagonal matrix
with (n, n)th entry equal to [a]n.

An OFDM system with N subcarriers and a cyclic prefix of
length L is considered. Using a notation similar to [12], the lth
transmitted block can be expressed as

u[l] = TCPFHs[l] (1)

where u[l] is a vector of dimension P = N + L, F is the
N × N unitary fast Fourier transform (FFT) matrix, defined by
[F]m,n = N−1/2 exp{[−j2π(m − 1)(n − 1)]/N}, s[l] is the
N -dimensional vector that contains the data symbols, and
TCP = [IT

CPIT
N ]T is the P × N matrix that inserts the cyclic

prefix, where ICP contains the last L rows of the identity
matrix IN . The data symbols contained in s[l], drawn from an
M -ary square QAM constellation, are assumed to be indepen-
dent and identically distributed (i.i.d.) with power σ2

S = 1.
After the parallel-to-serial conversion, the signal stream

u[lP + n] = [u[l]]n is transmitted through a multipath channel,
with impulse response expressed by

h(t) =
Q∑

q=1

ζqRψ(t − τq) (2)

where Q is the number of paths, ζq and τq are the complex
amplitude and the propagation delay, respectively, of the qth
path, and Rψ(τ) is the autocorrelation function of the pulse-
shaping waveform ψ(t). We consider a rectangular pulse-
shaping waveform with duration TS = T/N , where TS is the
sampling period and ∆f = 1/T is the subcarrier spacing. The
discrete-time equivalent channel is expressed by

h[i] = h(iTS). (3)

Throughout the paper, we assume that the channel ampli-
tudes {ζq} of the continuous-time channel (2) are Gaussian
distributed. Hence, also the taps of the discrete-time channel
(3) are Gaussian distributed, giving rise to Rayleigh or Rician
fading depending on their mean value. We also assume that the
maximum delay spread τmax = max{τq} is smaller than the
cyclic-prefix duration τCP = LTS, i.e., h[i] may have nonzero
entries only when 0 ≤ i ≤ L.

At the receiver side, the samples obtained after matched
filtering can be expressed as [13]

x[p] = ej2πf0pTS

L∑
i=0

h[i]u[p − i] + w[p] (4)

where f0 is the CFO, and w[p] represents the AWGN. Since
we want to focus on the effects of the CFO, we will assume that
the timing information is available at the receiver. This infor-
mation could be acquired by exploiting timing-synchronization
algorithms designed to work in the presence of an unknown
CFO [14]–[16]. In any case, when timing errors are significant,
the BER expressions we will derive later can be considered as
BER lower bounds.

The P received samples relative to the lth OFDM block are
grouped in the vector x[l], thus obtaining [13]

x[l] = e
j2πεlP

N D̃ (H0u[l] + H1u[l − 1]) + w̃[l] (5)

where [x[l]]n = x[lP + n], ε = f0T is the normalized CFO, D̃
is a P × P diagonal matrix defined by [D̃]n,n = e j2πε(n−1)/N ,
and H0 and H1 are P × P Toeplitz matrices defined by [12]

H0 =




h[0] 0 · · · · · · 0
...

. . .
. . .

...

h[L]
. . .

. . .
...

...
. . .

. . . 0
0 · · · h[L] · · · h[0]




H1 =




0 · · · h[L] · · · h[1]
...

. . .
. . .

...

0
. . . h[L]

...
. . .

. . .
...

0 · · · 0 · · · 0




. (6)

By applying the matrix RCP = [0N×LIN ] to x[l] in (5),
the cyclic prefix (and hence, the interblock interference) is
eliminated, thus obtaining, by (1), the N × 1 vector [13]

y[l] = RCPx[l] = e
j2πε(lP+L)

N DHFHs[l] + w[l] (7)

where D is an N × N diagonal matrix defined by [D]n,n =
ej2πε(n−1)/N , H = RCPH0TCP is the circulant channel
matrix defined by [H]m,n = h[(m − n) mod N ], and w[l] =
RCPw̃[l]. By applying the FFT at the receiver, we obtain
z[l] = Fy[l], which by (7) can be rearranged as

z[l] = e
j2πε(lP+L)

N ΦΛs[l] + v[l] (8)

where Φ = FDFH is the circulant matrix that produces the
ICI, Λ = FHFH = diag(λ) is the channel diagonal matrix
with elements expressed by

λ =
√

NFh (9)

h = [h[0] · · · h[N − 1]]T and λ = [λ1 · · · λN ]T being the
channel vectors in the time domain and frequency domain,
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respectively, and v[l] = Fw[l] = FRCPw̃[l] represents the
AWGN. From the above definitions, it is straightforward to
verify that [9]

[Φ]m,n =
sin (π ((n − m) mod N + ε))

N sin
(

π
N ((n − m) mod N + ε)

)
× ejπ N−1

N ((n−m) mod N+ε). (10)

Equation (8) shows the combined effect of the CFO and the
frequency-selective channel on the received vector z[l]. The
only difference, with respect to the AWGN case (i.e., when
Λ reduces to IN ), is that the CFO matrix exp{[j2πε(lP +
L)]/N}Φ, in frequency-selective channels, acts on the
channel-affected data vector Λs[l] rather than on the original
data vector s[l]. Consequently, the presence of a CFO pro-
duces similar effects in both AWGN and frequency-selective
scenarios, as briefly outlined in the following. First of all,
since Φ is not diagonal, there exists ICI among the channel-
affected data. Moreover, since the elements on the main
diagonal are characterized by |[Φ]n,n| < 1, the CFO introduces
an attenuation of the useful data transmitted on each subcarrier.
In addition, the matrix Φ contains also a phase-shift term
exp{[jπε(N − 1)]/N} that is common to all the subcarriers,
which has to be added to the block-dependent phase-shift
term exp{[j2πε(lP + L)]/N} in (8).

In this paper, we assume perfect channel state information
at the receiver. Moreover, we assume that the receiver is able to
perfectly compensate for the aggregate phase-shift term

ϕ[l] = e
j2πε(lP+L)

N e
jπε(N−1)

N (11)

which produces a time-varying rotation of the constellation.
Although this hypothesis may appear optimistic, it is a stan-
dard assumption [2], because it leads to time-invariant deci-
sion regions that correspond to the transmitted constellation.
In any case, since the phase shift in (11) is common to all
the subcarriers, its estimation can be incorporated into the
channel-estimation step. Consequently, if pilot tones are em-
ployed, the estimation accuracy depends on the number of
dedicated subcarriers.

Thus, by considering the effective channel as expressed by
ϕ[l]Λ, and performing the classical zero-forcing equalization,
from (8), we obtain

zEQ[l] = ϕ[l]−1Λ−1z[l] = Λ−1MΛs[l] + vEQ[l] (12)

where M = exp{[−jπε(N − 1)]/N}Φ contains the CFO,
and vEQ[l] = ϕ[l]−1Λ−1v[l]. The decision over zEQ[l] is suc-
cessively done according to the proper constellation size M .

III. BER OF OFDM SYSTEMS WITH CFO
IN FADING CHANNELS

In order to evaluate the error probability, without loss of
generality, we focus on the signal received on the first sub-
carrier, dropping the block index l for the sake of simplicity.

We consider a scaled version of the decision variable, obtained
from (12), as expressed by

z1 = λ1zEQ,1 = m1λ1s1 +
N∑

n=2

mnλnsn + v1 (13)

where zEQ,1 = [zEQ[l]]1, sn = [s[l]]n, v1 = ϕ[l]−1[v[l]]1, and

mn = [M]1,n =
sin (π(n − 1 + ε))

N sin
(

π(n−1+ε)
N

) ejπ N−1
N (n−1) (14)

represents the ICI coefficient due to the nth subcarrier for
n = 2, . . . , N , and the attenuation factor of the useful data
when n = 1.

A possible approach to obtain the BER (or equivalently, the
SER) consists of two steps. Firstly, we should calculate the
conditional bit-error probability PBE(s,λ) that depends on
the symbols in s = [s1 · · · sN ]T and on the channel ampli-
tudes in λ = [λ1 · · · λN ]T. Successively, PBE(s,λ) should
be averaged over the joint probability density function (pdf)
fS,Λ(s,λ) = fS(s)fΛ(λ) of the symbols and the channel am-
plitudes, as expressed by

BER =
∫
s,λ

PBE(s,λ)fS(s)fΛ(λ)dsdλ. (15)

The main difficulty in evaluating (15) is due to the presence
of the N -dimensional pdf fΛ(λ). Indeed, when dealing with
multidimensional integrations, it would be easier to evaluate
many single-variable integrals one at a time. However, (9)
shows that the N variables in λ are correlated with one another,
because the frequency-domain channel is obtained by combin-
ing at most L + 1 random variables, which are the nonzero
entries of h. Therefore, fΛ(λ) cannot be expressed as a product
of N separate one-dimensional pdfs. In order to overcome this
problem, we bypass the multidimensional integration by us-
ing the equality given by fΛ(λ) = fΛ|λ1

(λ|λ1)fλ1(λ1), where

fΛ|λ1
(λ|λ1) is the conditional pdf of λ = [λ2 · · · λN ]T given

λ1, and fλ1(λ1) is the pdf of λ1. Therefore, (15) becomes

BER =
∫
λ1

PBE(λ1)fλ1(λ1)dλ1 (16)

where

PBE(λ1) =
∫
s,λ

PBE(s,λ)fΛ|λ1
(λ|λ1)fS(s)dsdλ. (17)

In the following, we show that it is possible to approximate
PBE(λ1) without solving the multidimensional integral in (17).
Hence, by (16), the BER can be expressed as an integral over
a single complex variable.

A. BER Evaluation in Rayleigh Fading Channels

When the channel experiences Rayleigh fading, the channel
vector h, and hence λ in (9), is a zero-mean complex Gaussian
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random vector. In this case, the conditional pdf fΛ|λ1
(λ|λ1)

is an (N − 1)-dimensional Gaussian function with mean ηλ|λ1

and covariance Cλ|λ1
expressed by [17]

ηλ|λ1
=λ1c

−1
λ1λ1

cλλ1
(18)

Cλ|λ1
=Cλ λ − c−1

λ1λ1
cλλ1

cH
λλ1

(19)

where cλiλj
= E{λiλ

∗
j}, cλλ1

= [cλ2λ1 · · · cλN λ1 ]
T, and

Cλ λ is the (N − 1)-dimensional square matrix extracted from

Cλλ = E{λλH} =
[

cλ1λ1 cH
λλ1

cλλ1
Cλ λ

]
(20)

which is the covariance matrix of the frequency-domain
channel, related to the covariance matrix Chh = E{hhH} of
the time-domain channel by Cλλ = NFChhFH. After defin-
ing the conditional random variable t1 = z1|λ1, from (13), we
obtain

t1 = m1λ1s1 +
N∑

n=2

mnknsn + v1 (21)

where the conditional random variable kn = λn|λ1 is Gaussian,
with mean value ηn = E{kn} obtained from (18) as ηn =
λ1c

−1
λ1λ1

cλnλ1 , and with variance obtained from (19) as σ2
n =

[Cλ|λ1
]n−1,n−1, n = 2, . . . , N . Consequently, by defining the

zero-mean random variable κn = kn − ηn, we obtain

t1 = m1λ1s1 + α1λ1 + β1 + v1 (22)

where, by means of (18)

α1 = c−1
λ1λ1

N∑
n=2

mncλnλ1sn (23)

β1 =
N∑

n=2

mnκnsn. (24)

The quantities α1 and β1 depend on the statistical char-
acterization of the channel in the frequency domain, which
is contained in c−1

λ1λ1
cλnλ1 and in κn, respectively, on the

normalized CFO ε, which is linked to mn by (14), and on
the transmitted symbols {sn} corresponding to the interfering
subcarriers n = 2, . . . , N . It can be observed that α1 in (23)
depends on the correlation terms cλnλ1 among the subcarriers
deterministically, while β1 in (24) depends on the correlation
terms cλnλ1 statistically, by the variance of κn that is equal
to σ2

n = [Cλ|λ1
]n−1,n−1. Anyway, α1 and β1 do not depend

on the specific value of λ1 that characterizes the channel
realization.

From (22)–(24), it is evident that the ICI consists of two
parts. The first one (α1λ1) is proportional to the channel am-
plitude λ1 of the useful signal. Hence, α1λ1 represents the ICI
part that fades synchronously with the useful signal. The power

of α1λ1, which obviously depends on λ1, can be expressed as
|λ1|2σ2

ICI,α, where

σ2
ICI,α =

∣∣c−1
λ1λ1

∣∣2 N∑
n=2

|mncλnλ1 |
2 . (25)

On the other hand, the second part (β1) has a power that is
independent of λ1, and only depends on Cλ|λ1

, as expressed by

σ2
ICI,β =

N∑
n=2

|mn|2σ2
n =

N∑
n=2

|mn|2[Cλ|λ1
]n−1,n−1. (26)

Since α1λ1 and β1 are uncorrelated, the SINR conditioned
on λ1 can be expressed as

γ(λ1) =
|λ1|2|m1|2

|λ1|2σ2
ICI,α + σ2

ICI,β + σ2
AWGN

(27)

where σ2
ICI,α and σ2

ICI,β are expressed by (25) and (26),
respectively, and σ2

AWGN = E{|v1|2}. We underline that the
SINR expression (27) is conditioned on the specific channel
gain λ1, and therefore, it does not coincide with the aver-
age SINR evaluated in other papers (e.g., [2]–[4] and [6]).
Moreover, the conditional SINR expression (27) is valid also
when the paths of the channel in (2) are correlated in the
time domain. Indeed, both (25) and (26) take into account the
frequency-domain channel correlation, which is also influenced
by a possible channel correlation in the time domain. In addi-
tion, since we consider time-invariant channels, our expression
does not include Doppler-spread effects, which are considered
in [5] and [6].

It is worth noting that, when the channel experiences
frequency-flat fading, all the ICI is contained in α1λ1, because
in this case all the subcarriers fade simultaneously. Indeed,
when λn = λ1∀n ∈ {1, . . . , N}, by comparing (13) with (22),
it holds true that α1 =

∑N
n=2 mnsn and β1 = 0. On the other

extreme, α1 = 0 implies that cλλ1
= 0N−1×1, i.e., that the

first subcarrier fades independently of the other subcarriers.
However, the condition of independent fading is not realistic
for all the subcarriers, because a diagonal Cλλ implies a circu-
lant Chh, which is not compatible with the usual hypothesis
that the cyclic-prefix length is shorter than the OFDM data
block, i.e., L < N .

Although α1 in (23) is not strictly Gaussian, we observe
that α1 is obtained by the linear combination of the i.i.d.
data symbols {sn}N

n=2 with the coefficients {mncλnλ1}N
n=2,

apart from the scalar quantity c−1
λ1λ1

. As a consequence, since
practical OFDM systems have a high number N of sub-
carriers [1], the central limit theorem [18] allows the approx-
imation of α1 as a Gaussian random variable with zero mean
and variance σ2

ICI,α expressed by (25).
As far as the second part of the ICI is concerned, β1 in (24)

is a linear combination of the random variables {κnsn}N
n=2.

It can be easily proven [18] that the pdf of κnsn is a
weighted sum of Gaussian functions, each with variance equal
to E{|κn|2}|sn|2. Thus, due to the channel correlation in the
frequency domain, the pdf of β1 is not Gaussian. Anyway, we
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can invoke the central limit theorem to approximate also β1 as
Gaussian, with zero mean and variance expressed by (26).

As pointed out in Section I, the Gaussian approximation of
the ICI produced by the CFO has been already exploited in [7]
for AWGN channels and in [10] for Rayleigh fading channels.
However, in our case, different from [10], the power of the ICI
depends on the specific channel realization. In Section V, we
will check the accuracy of the approximation employed in our
approach.

By exploiting the Gaussian approximation, for QAM mod-
ulations with Gray coding, the conditional BER PBE(λ1) in
(17) can be approximated by the standard BER expression
for additive Gaussian noise. For example, the conditional
BER for QPSK, i.e., 4-QAM, is expressed by

PBE(λ1) = Q
(√

γ(λ1)
)

(28)

while for 16-QAM it can be expressed by [19]

PBE(λ1) =
3
4
Q

(√
1
5
γ(λ1)

)

+
1
2
Q

(√
9
5
γ(λ1)

)
− 1

4
Q

(√
5γ(λ1)

)
(29)

where γ(λ1) is the conditional SINR expressed by (27). In
the general M -QAM case, the conditional BER is the sum of√

M − 1 Q-shaped functions, as expressed by

PBE(λ1) =

√
M−1∑
i=1

aiQ
(√

biγ(λ1)
)

(30)

where the coefficients {ai} and {bi} depend on the constel-
lation size M [19]. Hence, the BER, obtained by inserting
(27) and (30) in (16), is the sum of

√
M − 1 integrals, as ex-

pressed by

BER =

√
M−1∑
i=1

ai

∫
λ1

Q
(√

biγ(λ1)
)

fλ1(λ1)dλ1 (31)

where fλ1(λ1) is the complex Gaussian pdf of λ1.
Without loss of generality, let us now focus on the QPSK

case. By (27), it is evident that the conditional SINR, and
hence, the conditional probability PBE(λ1) in (28), depends on
|λ1|, which is a real random variable with Rayleigh statistic.
Therefore, by a suitable change of integration variable, the
BER becomes

BER =

+∞∫
0

Q

(√
|λ1|2|m1|2

|λ1|2σ2
ICI,α + σ2

ICI,β + σ2
AWGN

)

× 2|λ1|
cλ1λ1

exp
(
− |λ1|2

cλ1λ1

)
d|λ1| (32)

which can be solved by numerical techniques such as the
Laguerre–Gauss quadrature [20], or estimated by Monte Carlo

methods. Alternatively, the integral (32) can be expressed as
the series expansion [21]

BER =
1
2
−

√
2µ

4
e−

µ2

2ν2

+∞∑
k=0

1
k!

(
µ2

2ν2

)k

× 2F0

(
k +

3
2
,
1
2
; ;−ν2

)
(33)

where

µ2 =
cλ1λ1 |m1|2

σ2
ICI,β + σ2

AWGN

(34)

ν2 =
cλ1λ1σ

2
ICI,α

σ2
ICI,β + σ2

AWGN

(35)

and 2F0(a, b; ;x) =
∑+∞

q=0(a)q(b)q(xq/q!) represents the gen-
eralized hypergeometric function [22], where (a)q = Γ(a +
q)/Γ(a) is the Pochhammer’s symbol expressed by means of
the Gamma function Γ(·) [20]. The proof of the equivalence
between (32) and (33) can be found in [21], which also con-
tains a simple and accurate truncation criterion for the series
expansion. Indeed, the relevant terms in (33) are only the ones
between kmin and kmax, expressed by

kmin = max
{

0,

⌊
r − 3

2
√

2πt

⌋}
(36)

kmax =
⌈
r +

3
2
√

2πt

⌉
(37)

r =
µ2

2ν2
(38)

t =
√

2µ

4
e−r 1

�r�!r
�r�

× 2F0

(
�r� +

3
2
,
1
2
; ;−ν2

)
. (39)

B. BER Evaluation in Rician Fading Channels

In Rician channels, we assume, as usual, that a single line-
of-sight (LOS) is present in the time domain, and consequently,
the LOS term is the same for all the subcarriers. To evaluate
the BER, we use the same approach adopted in the Rayleigh
case. Thus, the conditional pdf fΛ|λ1

(λ|λ1) is still an (N − 1)-
dimensional Gaussian with the same covariance matrix Cλ|λ1
expressed by (19), but with a mean value expressed by [17]

ηλ|λ1
= λLOS1N−1 + λ1,NLOSc−1

λ1λ1
cλλ1

(40)

where λLOS = E{λ1}, and λ1,NLOS = λ1 − λLOS is just the
zero-mean normalization of the complex Gaussian random
variable λ1. By using t1 to represent the random variable z1

conditioned on λ1 = λLOS + λ1,NLOS, we obtain

t1 = m1λ1s1 +
N∑

n=2

mnknsn + v1 (41)
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where the conditional random variable kn = λn|λ1 is Gaussian
with mean value ηn = λLOS + λ1,NLOSc−1

λ1λ1
cλnλ1 . In this

case, t1 can be expressed as

t1 = m1λLOSs1 + m1λ1,NLOSs1

+ α1λ1,NLOS + χ1 + β1 + v1 (42)

where

χ1 = λLOS

N∑
n=2

mnsn (43)

and α1 and β1 are defined in (23) and (24), respectively.
Equation (42) tells us that the conditional variable t1 is the sum
of a useful term and four noise terms, which, different from
the Rayleigh case, are not all uncorrelated with one another.
Specifically, the term α1λ1,NLOS is correlated with χ1, as
expressed by

ρICI,α,χ(λLOS, λ1,NLOS)

= E {χ∗
1α1λ1,NLOS}

= c−1
λ1λ1

λ1,NLOSλ∗
LOS

N∑
n=2

|mn|2cλnλ1 . (44)

By exploiting the Gaussian approximation for α1, β1, and
χ1, and taking into account that λ1 = λLOS + λ1,NLOS, the
conditional BER PBE(λ1) is again expressed as the sum of
Q-type functions like the one in (30), with conditional SINR
given by (45), shown at the bottom of the page, where

σ2
ICI,χ = |λLOS|2

N∑
n=2

|mn|2. (46)

Therefore, also in the Rician case, the BER can be obtained
by numerical integration of (16). For QPSK, this integral is
expressed by

BER =
∫

λ1,NLOS

Q

(√
γ(λLOS, λ1,NLOS)

)

× fλ1,NLOS(λ1,NLOS)dλ1,NLOS (47)

where fλ1,NLOS(λ1,NLOS) is complex Gaussian with zero mean.
Obviously, the BER also depends on the Rician factor K that
determines the LOS term λLOS.

C. BER Evaluation in the Presence of Guard Bands

So far, we have assumed that all the N subcarriers are
active, although any practical OFDM system contains some

virtual (or null) subcarriers used as guard frequency bands [1].
However, it is easy to extend the BER analysis in order to take
into account the presence of V virtual subcarriers, because a
virtual subcarrier does not contribute to the ICI. As an example,
assume that the null subcarriers are those with n ∈ {N −
V + 1, N − V + 2, . . . , N}. The only modification to the pre-
vious analysis is that sn = 0 for these subcarriers. Therefore,
the BER analysis still remains valid, provided that (25), (26),
(44), and (46) are truncated up to n = N − V . Obviously, in
this case, the BER is not the same for all the active subcarriers,
because the ICI power is smaller for those subcarriers that are
closer to the guard bands.

IV. BER OF OFDM SYSTEMS WITH BOTH CFO AND

NONLINEAR DISTORTIONS IN FADING CHANNELS

In this section, we extend the system model and the perfor-
mance analysis in order to also take into account the nonlinear
effects that may be introduced by the high-power amplifier
(HPA) at the transmitter side. After passing through an in-
stantaneous HPA, by exploiting the Bussgang theorem, the lth
transmitted OFDM block can be modeled by [23], [24]

u[l] = A0TCPFHs[l] + TCPwNL[l] (48)

where A0 represents the average linear amplification gain,
and TCPwNL[l] is the nonlinear-distortion noise, uncorrelated
with the linear part A0TCPFHs[l]. The validity of (48), based
on a Gaussian distribution of FHs[l], is justified by the high
number of subcarriers usually employed in OFDM systems
(e.g., N > 32) [24].

By revising the system model with (48) instead of (1), (8)
and (13) become

z[l] =A0e
j2πε(lP+L)

N ΦΛs[l] + e
j2πε(lP+L)

N ΦΛvNL[l] + v[l]

(49)

z1 =A0m1λ1s1 + A0

N∑
n=2

mnλnsn +
N∑

n=1

mnλnvNL,n + v1

(50)

respectively, where vNL,n = [vNL[l]]n, with vNL[l] =
FwNL[l]. Therefore, the BER can still be expressed by (16),
with a conditional BER PBE(λ1) modified to

PBE(λ1) =
∫

s,vNL,λ

PBE(s,vNL,λ)fΛ|λ1
(λ|λ1)

× fS,VNL(s,vNL)dsdvNLdλ. (51)

γ(λLOS, λ1,NLOS) =
|λLOS + λ1,NLOS|2|m1|2

|λ1,NLOS|2σ2
ICI,α + 2Re [ρICI,α,χ(λLOS, λ1,NLOS)] + σ2

ICI,χ + σ2
ICI,β + σ2

AWGN

(45)
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By assuming Rayleigh fading, from (50), the conditional
random variable t1 = z1|λ1 becomes

t1 = A0(m1λ1s1 + α1λ1 + β1) + α̃1λ1 + β̃1 + v1 (52)

where α1 and β1 are expressed by (23) and (24), respec-
tively, and

α̃1 = c−1
λ1λ1

N∑
n=1

mncλnλ1vNL,n (53)

β̃1 =
N∑

n=2

mnκnvNL,n. (54)

Since each element of the nonlinear-distortion noise vector
vNL[l] = FwNL[l] is obtained by linear combination of N ele-
ments, when N is large, the pdf of vNL[l] can be approximated
by an N -dimensional Gaussian with zero mean and covariance
expressed by CNL = E{vNL[l]vNL[l]H}. Therefore, by ex-
ploiting the uncorrelatedness between the nonlinear-distortion
noise and the useful term, it is straightforward to obtain the
BER as in (30), with conditional SINR expressed by (55),
shown at the bottom of the page, where

σ2
NL,α =

∣∣c−1
λ1λ1

∣∣2 N∑
i=1

N∑
j=1

mim
∗
jcλiλ1c

∗
λjλ1

[CNL]i,j (56)

σ2
NL,β =

N∑
i=2

N∑
j=2

mim
∗
j

[
Cλ|λ1

]
i−1,j−1

[CNL]i,j . (57)

The elements of CNL, as well as the linear gain A0, can
be evaluated by means of closed-form expressions that depend
on the autocorrelation function of the HPA input, on the input
backoff (IBO) BIN to the HPA, and on the amplitude modu-
lation to amplitude modulation (AM/AM) and the amplitude
modulation to phase modulation (AM/PM) curves of the HPA
[23]. Moreover, since the nonlinear-distortion noise has an
almost-flat power spectral density in the bandwidth of the
useful signal, we can use the approximation CNL ≈ σ2

NLIN ,
with σ2

NL calculated as σ2
NL = (1/N)

∑N
n=1[CNL]n,n [23].

Therefore, (56) and (57) become

σ2
NL,α ≈σ2

NL

(
|m1|2 + σ2

ICI,α

)
(58)

σ2
NL,β ≈σ2

NLσ2
ICI,β (59)

and the conditional SINR (55) can be approximated as

γ(λ1) ≈
|λ1|2|A0|2|m1|2

|λ1|2σ2
α + σ2

β + σ2
AWGN

(60)

where

σ2
α =

(
|A0|2 + σ2

NL

)
σ2

ICI,α + σ2
NL|m1|2 (61)

σ2
β =

(
|A0|2 + σ2

NL

)
σ2

ICI,β . (62)

Also, in this case, we can avoid the numerical integration by
resorting to series expansions of 2F0-type generalized hyper-
geometric functions like the one in (33). In this case, by
assuming QPSK with Gray coding, the BER is expressed by

BER ≈ 1
2
−

√
2µ

4
e−

µ2

2ν2

+∞∑
k=0

1
k!

(
µ2

2ν2

)k

× 2F0

(
k +

3
2
,
1
2
; ;−ν2

)
(63)

where

µ2 =
cλ1λ1 |A0|2|m1|2
σ2

β + σ2
AWGN

(64)

ν2 =
cλ1λ1σ

2
α

σ2
β + σ2

AWGN

(65)

with σ2
α and σ2

β expressed by (61) and (62), respectively.
The performance analysis in the presence of nonlinear dis-

tortions for Rician channels can be obtained as follows. Firstly,
from (50), we can evaluate the conditional random variable
t1 = z1|λ1 by using the same approach adopted for Rician
channels in linear scenarios. Successively, like for Rayleigh
channels, we can exploit the Gaussian approximation of the
nonlinear-distortion noise in order to get the conditional SINR.
Both the approaches are very similar to the ones already de-
scribed in Section III-B and in this section, and therefore, for
the sake of brevity, a detailed derivation is omitted.

V. SIMULATION RESULTS

In this section, we present some simulation results in order
to validate the Gaussian approximation of the ICI applied in
the theoretical analysis. We consider an OFDM system with
N = 64 subcarriers, with a subcarrier separation of ∆f =
1/T = 312.5 kHz, and with cyclic prefix of length L = 16. We
use the channel models B and D of the IEEE 802.11a WLAN
standard [25]. In the models B and D, each time-domain tap
suffers independent Rayleigh and Rician fading, respectively,
with exponentially decaying power delay profile, and root mean
square (rms) delay spread equal to 100 and 140 ns, respectively.

Fig. 1 shows the BER performance of QPSK in the
Rayleigh channel B, as a function of the received (Eb/N0) =
(cλ1λ1/σ2

AWGN log2 M). It is evident that the theoretical
analysis exactly predicts the simulated BER for different

γ(λ1) =
|λ1|2|A0|2|m1|2

|λ1|2|A0|2σ2
ICI,α + |A0|2σ2

ICI,β + |λ1|2σ2
NL,α + σ2

NL,β + σ2
AWGN

(55)



2286 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

Fig. 1. BER of QPSK in the Rayleigh channel B.

Fig. 2. BER of 16-QAM in the Rayleigh channel B.

values of the normalized CFO ε. Such a good agreement clearly
indicates that, different from the AWGN case [7], in frequency-
selective scenarios, the Gaussian approximation of the ICI
leads to accurate results. The motivation of this accuracy can
be easily explained. Indeed, when the interference is the sum
of many variables, the approximation by a single Gaussian
random variable gets worse at the tail of the Gaussian pdf,
and consequently, the approximated BER is not sufficiently
accurate when the true BER is small (i.e., when the inter-
ference power is small compared to the signal power). The
mismatch between the approximated and the exact BER hap-
pens not only in AWGN channels, but also for the conditional
BER PBE(λ1) in our scenario. However, in fading channels,
the BER is obtained by averaging PBE(λ1) over the pdf of λ1,
and hence, it is practically imposed by the values of PBE(λ1)
that correspond to the small values of |λ1| [26]. For these
values, the Gaussian approximation is very good, because
PBE(λ1) is high (i.e., the interference power is significant with
respect to the signal power), and therefore, the obtained BER

Fig. 3. BER of QPSK in the Rayleigh channel B.

Fig. 4. BER of QPSK in the presence of guard bands.

exactly matches with the true BER. This behavior is confirmed
by the results of Fig. 2, which shows the BER of 16-QAM
versus Eb/N0 for different values of the normalized CFO ε,
and by the results of Fig. 3, which exhibits the BER of QPSK
versus the normalized CFO ε for different values of Eb/N0.

Figs. 1 and 2 show also the BER performance obtained using
the ICI approximation proposed in [10]. Although the paper
[10] mainly deals with the effect of the channel-estimation
errors, it approximates all the ICI as a zero-mean Gaussian
random variable with power independent of the fading gain.
However, as we showed in (22), part of the ICI is propor-
tional to the fading gain λ1. Therefore, when |λ1| is low
(high), the ICI power is smaller (larger) than the one as-
sumed in [10]. Since most of the errors are committed when
|λ1| is low, it turns out that in [10], the degradation due to
the ICI is overestimated, as confirmed by the BER floors in
Figs. 1 and 2.

Fig. 4 shows the BER when NA = N − V = 52 out of
N = 64 subcarriers are active [25], using QPSK and channel B.
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Fig. 5. BER of QPSK in the Rician channel D.

Fig. 6. BER of 16-QAM in the Rician channel D.

As a worst case for checking the Gaussian approximation, we
considered the BER of the best subcarrier, because in this
case, the number of subcarriers that contribute to the ICI is
the smallest one. Anyway, Fig. 4 clearly evidences that the
approximation is very accurate in this context too.

Figs. 5 and 6 illustrate the BER performance in the chan-
nel D with Rician factor K = 10, for QPSK and 16-QAM,
respectively. In such a scenario, for high values of Eb/N0, the
theoretical BER, which is obtained by Monte Carlo integration
of (47), is less accurate than in the previous cases. The reason
for this inaccuracy is the high Rician factor K, which produces
a high value of the channel mean value λLOS. Consequently, the
term χ1 in (43) is the dominant one among the ICI terms. Since
χ1 is similar to the ICI term in AWGN channels, we expect
that the theoretical BER overestimates the true BER, as in
AWGN channels [7]. Nevertheless, as shown in Figs. 5 and 6,
in Rician channels, this mismatch is very small.

Fig. 7 shows the BER performance in the presence of a
nonlinear HPA at the transmitter, when the normalized CFO

Fig. 7. BER of 16-QAM in the Rayleigh channel B when ε = 0.01.

is equal to ε = 0.01, using 16-QAM and the channel B.
In the presence of nonlinear distortion, we define Eb/N0 =
cλ1λ1(|A0|2 + σ2

NL)/(σ2
AWGN log2 M), and the output backoff

(OBO) as BOUT = PU,MAX/σ2
U, where PU,MAX and σ2

U are
the maximum power and the mean power, respectively, of the
HPA output signal. We assume that the amplifier is perfectly
predistorted, i.e., it behaves as a clipper of the HPA input
envelope. In this case, it holds true that BOUT = BIN/(1 −
e−BIN) and that A0 = 1 − e−BIN + (

√
πBIN/2)erfc(

√
BIN)

[23]. The results of Fig. 7 clearly indicate that the theoretical
analysis is quite accurate also when both CFO and nonlinear
distortions are present. Indeed, the Gaussian approximation of
the nonlinear-distortion noise is quite accurate for low OBO,
i.e., when the nonlinear-distortion noise dominates the ICI. On
the contrary, if the OBO is high, the Gaussian approximation of
the nonlinear-distortion noise is not very accurate for N = 64
active subcarriers [27]. However, at high OBO, the nonlinear-
distortion noise is dominated by the ICI, whose pdf is well
approximated by a Gaussian function.

Finally, we want to point out that the Gaussian approximation
of the ICI can be successfully applied not only in WLAN
scenarios, but also in broadcasting environments. Indeed, the
OFDM systems usually employed for broadcasting applications
have thousands of active subcarriers [1], and therefore, it is
expected that the Gaussian approximation of the ICI will per-
form even better than in WLAN situations. Moreover, with
thousands of active subcarriers, also the Gaussian approxima-
tion of the nonlinear-distortion noise is very accurate [23], [27],
and therefore, the proposed approach is even more reliable.

VI. CONCLUSION

We have proposed a theoretical approach that allows the
prediction of the BER of uncoded OFDM systems impaired
by CFO in frequency-selective Rayleigh (or Rician) fading
channels. We also considered the joint effect of CFO and
nonlinear distortions introduced by a nonlinear amplifier at
the transmitter. The proposed approach, based on the Gaussian
approximation of the ICI, is not only characterized by a good
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degree of accuracy, but it has also the advantage of being very
simple. Further studies could also consider the presence of
channel estimation errors [10] and channel coding performed
by linear precoders [28].
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