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ABSTRACT 

We consider frequency-domain equalization of single-
carrier systems in doubly-selective channels. In this frame-
work, we investigate the role of channel extension in the 
time domain on the performance of extended frequency-
domain equalization. Specifically, we propose a new low-
complexity channel extension technique, whose comparison 
with other techniques is performed by evaluating the ap-
proximation error of the channel matrix and the BER of 
banded linear MMSE equalizers. 
 

Index Terms— Doubly-selective channels, frequency-
domain equalization, channel extension 
 

1. INTRODUCTION 
Block transmissions have been widely investigated in the 
last decade [1]. Among them, the great success of orthogo-
nal frequency-division multiplexing (OFDM) is mostly due 
to its capability to convert frequency-selective channels into 
a set of parallel frequency-flat channels, which can be easily 
equalized by single-tap equalizers in the frequency domain 
[1]. Block single-carrier (SC) systems, equipped with either 
zero padding or cyclic-prefix time guards [1] [2], are the 
natural OFDM counterparts that keep the easy frequency-
domain equalization property while reducing the peak-to-
average power ratio problem. 

Several papers [3,4,5,6] have proved that, in OFDM 
systems, frequency-domain equalization with moderate 
complexity increase is still possible also in time-varying 
channels. Indeed, although the overall frequency-domain 
channel matrix is no longer diagonal, due to the Doppler 
effect that introduces intercarrier interference, it is possible 
to take equalization complexity under control by exploiting 
the approximately banded structure of the frequency-domain 
channel matrix, which is caused by the finite support of the 
Doppler spread. 

Basically, the low-complexity equalizers [3,4,5,6] as-
sume a perfect banded structure in the frequency-domain 
channel matrix, neglecting in their expressions the (small) 
channel modeling error. Recently, similar approaches for  
frequency-domain equalization of doubly-selective channels 
have been investigated also for SC systems, as in [7,8,9], 
where it was shown that such block equalization philosophy 
can be devised also for classical SC systems, which are not 
equipped with time guards between data blocks and are con-
sequently prone to interblock interference (IBI). 

In order to control the IBI, [7] and [8] proposed to 

opportunely design a receiver window in the time domain, 
while [9] proposed to cancel the IBI from the previous re-
ceived blocks by a data-driven approach. Although a com-
parison between the two philosophies would deserve to be 
investigated, in this paper we will consider SC systems 
where the IBI is not present, either because deterministically 
eliminated by appropriate zero-padding time guards, or by 
assuming a perfect IBI cancellation as in the approach sug-
gested in [9]. Conversely, aim of this paper is to focus on 
the extended channel equalization philosophy that has been 
recently introduced in [8] and [9], in order to increase the 
resolution capability of the equalizer in the Doppler-
frequency domain. Specifically, we highlight the differences 
between the approaches proposed in [8] and [9], and also 
propose a new extended channel model which is character-
ized by a good performance-complexity trade-off with re-
spect to the other two solutions. To this end, we will inves-
tigate by simulations the impact of the different channel 
extensions on the banded structure of the extended channel 
matrix in the frequency domain. Finally, we investigate the 
impact of the band approximation error on the BER per-
formance of SC systems equipped with linear minimum 
mean-squared error (LMMSE) equalizers that assume a per-
fect banded structure of the frequency-domain extended 
channel matrix. 

2. SYSTEM MODEL 
We assume that the physical-layer data, transmitted in the 
time domain, are parsed in blocks that contain D  symbols 
each. We also assume that a pilot block of length P  is in-
serted between two consecutive data blocks. These pilot 
blocks can be used to estimate the impulse response of the 
channel. We denote with d  the D -dimensional vector that 
represents a generic data block, with covariance expressed 
by 2

d Dσ=ddC I , and with p  the P -dimensional vector that 
contains the training symbols of a generic pilot block. 

The signal stream is transmitted through a doubly-
selective channel, i.e., a multipath channel with significant 
time-variation. The discrete-time equivalent impulse re-
sponse of the channel can be expressed by 
 c S S[ , ] ( , )h n l h nT lT= , (1) 
where ST  is the sampling period, n  is the time index, and l  
is the lag index. We assume that both the impulse responses 
of the transmit and the receive pulse-shaping filters are in-
cluded into the continuous-time channel impulse response 

c ( , )h t τ . We also assume that the maximum channel delay 
spread L  is smaller than the pilot duration P , which im-
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plies [ , ] 0h n l ≠  only when 0 l L P≤ < ≤ . 
By assuming both time and frequency synchronization 

at the receiver, the input-output relation in the time domain 
can be expressed by 
  t t t t t= + +y H x i n , (2) 
where ty  is the received block of size N D P= + , tH  is a 
banded lower triangular N N×  matrix that represents the 
doubly-selective channel, with element ( , )n l  defined by 

t ,[ ] [ , ]n l h n n l= −H  for 0 , 1n l N≤ ≤ − , t [  ]T T T=x d p  is the 
current transmitted block, ti  contains the IBI, due to the 
multipath effect of the previous pilot block, and tn  is the 
zero-mean additive white Gaussian noise (AWGN) vector, 
with covariance 

t t

2
n Nσ=n nC I . We assume that the channel 

impulse response [ , ]h n l  is perfectly known to the receiver. 
Hence, the IBI term ti  is assumed known and perfectly 
compensated for. Noteworthy, the IBI is absent also when 
zero-padded pilot blocks with 2 1P L≥ +  are used, as in the 
training scheme suggested in [10]. 

3. EXTENDED FREQUENCY-DOMAIN 
EQUALIZATION 

In order to compensate for the channel matrix tH  in (2), a 
common way is to perform linear equalization, such as 
LMMSE, in the time domain [11]. However, this approach 
requires to solve a banded triangular linear system whose 
complexity is 2( )O NL , which is cumbersome for channels 
with long delay spreads. 

A second option is to design the LMMSE equalizer in 
the frequency domain. Let us denote with NF  the N N×  
unitary discrete DFT matrix, and define f tN=y F y , 

f tN=x F x , f tN=n F n , and 
 f t

H
N N=H F H F . (3) 

From these definitions, by using the zero-IBI assumption, it 
is easy to show that (2) becomes 
  f f f f= +y H x n . (4) 
The LMMSE equalization can be expressed by [11] 

 
f f f f f f

1
f f f f fˆ ( )H H −= +x x x x n nx C H H C H C y , (5) 

where the time-domain data can be recovered using 
t fˆ ˆH

N=x F x , the matrix 
t tx xC  represents the data covariance, 

f f t t

H
N N=x x x xC F C F  and 

f f t t

H
N N=n n n nC F C F . The frequency-

domain equalization approach for single-carrier systems, 
originally suggested by [2], is characterized by a very low 
complexity when the channel is time invariant. Indeed, in 
this special case, the linear system to be solved is diagonal, 
like in OFDM transmissions. (The circularity of the time-
domain channel matrix can be imposed in many ways, e.g., 
by using periodic pilots.) 

For time-varying channels, although the linear system is 
no longer diagonal, low complexity equalization is still pos-
sible when the LMMSE equalizer in (5) is approximated by 
employing a structured approximated channel matrix instead 
of the exact fH . For instance, the frequency-domain chan-
nel matrix can be approximated by its banded version [3] 
 ( ) ( )

f f
Q Q

N=H H T , (6) 
where ( )Q

NT  is a circulant matrix with first row equal to 

      1 1 1 (2 1) 1[   ]Q N Q Q× + × − + ×1 0 1 , the symbol  represents the Ha-
damard (i.e., element-wise) product between two matrices, 
and Q  is a design parameter. By this approximation, the 
equalization in (5) becomes 

   

f f f f f f

( ) ( ) ( ) ( ) 1
f f f f fˆ ( )Q Q H Q Q H −= +x x x x n nx C H H C H C y , (7) 

and obviously ( ) ( )
t fˆ ˆQ H Q

N=x F x .The reason behind the banded 
approximation of (6) lies in the limited Doppler support of 
the channel time variation, which renders negligible the 
elements of fH  far away from the main diagonal. As a con-
sequence of the banded approximation, the complexity of 
the frequency-domain banded equalizer is 2( )O NQ , which 
is significantly smaller than the time-domain approach when 
Q L<< . 

To enhance the performance of banded equalizers, re-
cently, a third type of equalization has been proposed in [8] 
and [9]. The common idea of both methods is to increase the 
number of degrees of freedom of the equalizer by perform-
ing the equalization step in a frequency-domain with higher 
resolution. This is accomplished by using a DFT of dimen-
sion U N>  on the received vector. Let us define 
 

 et t 1[  ]T T
U N× −=y y 0 , (8) 

which represents the zero-padded received vector. To high-
light the higher dimension of the time-domain vectors, this 
domain will be referred to as the extended time domain. We 
can rewrite the input-output relation as 
 et et et et= +y H x n , (9) 

with et t L[  ]T T T=x x x , et t L[  ]T T T=n n n , and 

 UL UR
et

LL LR

 
=  
 

H H
H

H H
, (10) 

where UL t=H H , and Lx , Ln , URH , LLH , and LRH  are 
design parameters that should satisfy the following con-
straints 
 

  UR L 1N ×=H x 0 , (11) 

 
  LL t LR L L 1U N− ×+ + =H x H x n 0 . (12) 

By performing a DFT of dimension U , we obtain the input-
output relation in the extended frequency domain. This rela-
tion, which is formally similar to (4), is expressed by 
  ef ef ef ef= +y H x n , (13) 
where ef etU=y F y , ef etU=x F x , ef etU=n F n , and 
 ef et

H
U U=H F H F . (14) 

The banded LMMSE equalizer of (7), in the extended fre-
quency domain, can be expressed as 

       

ef ef ef ef ef ef

( ) ( ) ( ) ( ) 1
ef ef ef ef efˆ ( )Q Q H Q Q H −= +x x x x n nx C H H C H C y , (15) 

 ( ) ( )
ef ef
Q Q

U=H H T , (16) 

 ( ) ( )
et efˆ ˆQ H Q

U=x F x . (17) 

The main feature of the extended-domain equalizers is 
the extra degrees of freedom that can be exploited to achieve 
a given goal. For instance, one goal could be to increase the 
performance, e.g., by reducing the band approximation er-
ror. In this view, receiver windowing could be coupled with 
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the channel extension method [8]. Another goal could be to 
constrain the computational complexity increase. Indeed, the 
computational complexity is 2( )O UQ , and hence is /U N  
times higher than in the conventional frequency domain. 

In the following, we review different already-known 
choices for the channel matrix extension in (10), highlight-
ing features and drawbacks of each option. This will guide 
us in proposing a new design choice. We will not consider 
receiver windowing, whose design is different depending on 
the type of domain (extended [8] and conventional [7]) and 
on the type of channel extension. The detailed performance 
comparison of known and new choices for the channel ex-
tension will be carried out in Section 4, with the help of 
some simulation results. 

3.1. True Channel (TC) Extension 
The natural way to extend the time-domain channel matrix 
is to use the extension of the true channel (TC), either to-
wards the “future” or towards the “past”. Specifically, in the 
“future” case, the extended time-domain channel matrix is 
expressed by 
 t ,[ ] [ , ]n l h n n l= −H ,  0 , 1n l U≤ ≤ − . (18) 
If we look at the continuous-time channel paths, the TC ex-
tension guarantees the continuity of the time variation of the 
channel path. In the “past” case, the channel extension is 
analogous to the “future” case. The only difference is that 
the zero padding of (8) must be replaced by trailing zeros. In 
case of estimated channels, a “past” extension could be 
more practical, since the “future” extension requires a larger 
equalization delay. 

3.2. Zero-Padding (ZP) Channel Extension 
An alternative choice is the zero-padding (ZP) channel ex-
tension [9], characterized by 

   
  UR N U N× −=H 0 ,   

  LL U N N− ×=H 0 ,   
  LR U N U N− × −=H 0 , (19) 

and by 
  L 1U N− ×=n 0 . Therefore, the two constraints (11) and 

(12) are satisfied. The ZP extension has a simple intuitive 
meaning of frequency-domain interpolation. By (14), this 
choice is equivalent to the increase of both the frequency-
domain resolution and the Doppler-domain resolution. How-
ever, the time variation of the extended channel path pre-
sents a discontinuity, which translates into an increase of the 
band approximation error in (16). Noteworthy, the increased 
approximation error does not automatically turn into a per-
formance loss with respect to the conventional frequency-
domain equalizer, at least for low Doppler spread [9]. 

3.3. Fourier Series (FS) Channel Approximation 
A third method, proposed in [8], adopts the extended chan-
nel that minimizes the band approximation error. This 
method relies on the Fourier series (FS) approximation of 
the channel time variation, and omits the constraint 

UL t=H H . Specifically, let us denote with lh  the N -
dimensional vector that contains the time variation of the 
l th channel path, from 0n =  to 1n N= − . By defining the 

2 1U Q× +  matrix ( )Q
UF  as the submatrix that contains only 

the first 1Q +  and the last Q  columns of UF , and the 

2 1M Q× +  matrix ( , )M Q
UF  as the submatrix that contains 

only the first M  rows of ( )Q
UF , with M U< , the FS ap-

proach constructs the extended channel matrix etH  in (10) 
by using the U -dimensional extended channel paths 

(FS)
0{ }L

l l =h  obtained as the FS approximation of the N -
dimensional true channel taps 0{ }L

l l =h , as expressed by 

 F F( ) ( , )(FS) †( )Q N Q
l U U l=h F F h , (20) 

where the superscript †  denotes Moore-Penrose matrix 
pseudoinversion. Please observe that FQ  used in (20) can be 
different from the Q  parameter used in (16) to band the 
extended frequency-domain channel matrix. 

From (20), it is clear that by the FS approach, the first 
N  elements of the extended channel paths do not coincide 
with the true channel paths. Nevertheless, as shown in the 
example of Fig. 1, usually the approximation is rather good. 
More precisely, the FS method projects the channel paths in 
such a way that the channel matrix in the extended fre-
quency domain efH  in (14) is exactly banded with semi-
band FQ , suggesting the choice FQ Q= . Therefore, the 
band approximation error F( )

efef|| ||Q
F−H H  is minimized, 

being virtually zero (apart from those numerical errors 
caused by finite-precision calculation). This exact banded 
structure is achieved by circularly extending the channel 
paths in the submatrix URH  in (10), as it happens in the 
OFDM case [3]. As a result of the Fourier basis periodicity, 
the extended channel path is periodic (with period U ). 
From the complexity point of view, the FS channel ap-
proximation is more complex than the TC and ZP ap-
proaches, because of the linear transformation in (20). 

Please note that, when the time-varying channel is esti-
mated using a basis expansion model (BEM), the channel 
matrix can be estimated in the extended frequency-domain 
[12]. This means that, when the BEM span K  is chosen 
equal to U , it is mathematically possible to directly esti-
mate the diagonals of F( )

ef ef
Q=H H , thereby bypassing (20). 

However, the channel identifiability condition requires that 
the number of used pilot blocks is greater than or equal to 
the number of BEM functions used to model the time varia-
tion [12]. Hence the BEM size should be F(2 1)K Q N≥ + , 
which is usually larger than common values used for U  
even for F 1Q =  (in [8,12], 2U N= ). In other words, the 
complexity of (20) cannot be saved in practice. 

3.4. Reversal Channel (RC) Extension 
In order to reduce complexity while maintaining a small 
approximation error, we introduce a new channel extension. 
Our aim is to avoid the complexity increase given by (20) 
and to maintain the time variation continuity to keep the 
band approximation error at a reasonably small level. First, 
we note that, in the digital domain, continuity should be 
intended in a cyclic sense. For instance, the TC extension 
should not be intended as continuous, because the two edge 
values can be significantly different, like in the example of 
Fig. 1. On the other hand, the FS approximation is continu-
ous because is periodic with period U . As a result, we pro-
pose to extend each channel path by reversing the time 
variation itself. This way we are able to force cyclic conti-
nuity like in the FS approach, while avoiding any calcula-
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tions like in the TC and ZP approaches. Obviously, we are 
imposing an additional constraint, which is 2U N= . An 
example of the proposed approach, referred to as reversal 
channel (RC) extension, is shown in Fig. 1. Mathematically, 
the U -dimensional extended path can be expressed by 
 (RC) [   ]T T T

l l l N=h h h J , (21) 
where lh  is the vector that contains the time variation of the 
l th channel path, from 1n =  to n N= , and NJ  is the 
N N×  counteridentity matrix, i.e., a permutation matrix 
with all ones in its antidiagonal. 

Intuitively, we expect that the RC approach, though less 
complex than the FS approach, will not maintain the zero 
band approximation property of the FS. Indeed, the RC ex-
tension, although continuous, does not implies the continu-
ity of the derivatives. For instance, from Fig. 1, it is clear 
that for the RC the first derivative is not continuous at 

8n = . However, differently from the FS, the channel be-
havior is exactly represented in the first part. As a conse-
quence, we expect that the performance of the RC approach 
will not be too far from that of the FS approach. To quantify 
the performance of the different approaches discussed in this 
section, we resort to simulation results. 

4. SIMULATION RESULTS 
We want to compare the band approximation error and the 
BER performance of the equalizers described in Section 3. 
We assume a multipath channel with order 10L = , expo-
nential power-delay profile 2 / 4{| [ , ] | } lE h n l e−= , and zero-
mean complex Gaussian independent random paths 
(Rayleigh fading). The time variation is modeled by a Jakes’ 
Doppler spectrum with maximum Doppler spread Df . We 
also assume data blocks of length 118D = , with i.i.d. 
QPSK symbols, and pilot blocks of length P L= , which 
leads to 128N = . At the receiver, we fix 2 256U N= = . 
For the FS method, we use F 2Q = . 

In the first set of simulations, we assume a normalized 
Doppler spread D S 0.32f T N = . Fig. 2 illustrates the relative 
squared band approximation error (RAE), defined as 

 
( ) 2

efef
2

ef

|| ||
RAE( )

|| ||

Q
F

F
Q

−
=

H H
H

 (22) 

( ( )
f
QH  and fH  are used for the usual frequency domain). 

From Fig. 2, it is evident that the RAE decreases smoothly 
with Q  for TC, ZP, and conventional frequency-domain 
channel matrices, while decreases rapidly for the RC and FS 
extensions. Therefore, we expect that RC and FS will pro-
duce better equalization performance with respect to the 
other cases. Fig. 2 also confirms that the FS method pro-
duces RAE( ) 0Q =  for FQ Q≥ . 

Fig. 3 displays the BER performance of the different 
equalizers, as a function of the SNR per bit, for 2Q = . As 
expected, RC and FS give the best performance. In particu-
lar, FS slightly outperforms RC. This means that FS is able 
to counterbalance its (non-extended) channel path approxi-
mation thanks to its reduced band approximation error. 
However, FS requires the extra complexity of (20). Among 
the other approaches, ZP yields relatively-good perform-
ance, despite its high RAE. Indeed, although the ZP exten-

sion is discontinuous at both edges, its interpolation effect 
produces a useful increased resolution, which is exploited 
by the equalizer [9]. 

Fig. 4 focus on the BER comparison between FS and 
RC for different values of Q . For 3Q = , the two methods 
gives the same performance, which coincides with that ob-
tained by FS for 2Q = . This is obvious for FS, whose RAE 
is zero for F 2Q Q> = , but not for RC, whose RAE is non 
zero. However, RC is able to better represents the non-
extended part of the channel path. This is confirmed by ob-
serving the results for 1Q = , where RC slightly outper-
forms FS, despite RC presents a higher value of RAE when 

1Q =  (see Fig. 2). 
In the second set of simulations, we assume a higher 

normalized Doppler spread D S 0.64f T N = . In this case, Fig. 
5 shows for RC an alternating behavior of RAE reduction 
and almost-constant RAE. This is confirmed by the BER 
comparison of Fig. 6, where RC with 3Q =  produces only a 
minor improvement with respect to RC with 2Q = . This 
confirms the usefulness of the RAE simulations in predict-
ing the BER behavior. 

5. CONCLUSIONS 
We have investigated the effect of different channel exten-
sions on the banded structure of extended frequency-domain 
channel matrices that model doubly-selective channels. We 
proposed a new time-reversal-based channel extension that, 
compared with the ZP interpolation method, has the nice 
property to similarly increase the frequency-domain resolu-
tion without any complexity increase, while reducing the 
BER of banded LMMSE equalizers. Future work will focus 
on pilot-aided channel estimation and on receiver windows 
specially designed for the proposed reversal extensions. 
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Fig. 1. Example of different channel extensions ( 8N = , 16U = ). 
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Fig. 2. Band approximation error as a function of Q  ( D S 0.32f T N = ). 
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Fig. 3. BER for different channel extensions ( 2Q = , D S 0.32f T N = ). 
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Fig. 4. BER comparison between FS and RC ( D S 0.32f T N = ). 
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Fig. 5. Band approximation error as a function of Q  ( D S 0.64f T N = ). 
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Fig. 6. BER for different channel extensions ( D S 0.64f T N = ). 

524


