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ABSTRACT
In OFDM systems, fast time-varying channels can be effectively es-
timated and tracked by coupling a channel basis expansion model
with a Kalman filtering approach. Although the Kalman filter is
asymptotically MSE-optimal when the channel statistics are known,
it may suffer some performance degradation in the presence of sta-
tistical mismatches. We propose to estimate OFDM doubly-selective
channels by an H∞ filtering approach that, although suboptimal in
the MSE sense, is more robust than classical Kalman filtering to sta-
tistical mismatches. Simulation results and performance compar-
isons assess the effectiveness of the proposed solution.

1. INTRODUCTION

In mobile communication systems with high data-rate and fast mo-
bility, the wireless fading channel is doubly-selective, i.e., both fre-
quency-selective and time-selective. Orthogonal frequency-division
multiplexing (OFDM) is a well known technique that is able to coun-
teract frequency-selective fading channels [1] by means of paral-
lel data transmission in the frequency domain. However, it is well
known that OFDM systems are more sensitive than single-carrier
systems to fast linear time-varying (LTV) channels, because the in-
tercarrier interference (ICI) caused by Doppler effects destroys the
orthogonality among the OFDM subcarriers [2] [3]. In order to
counteract the ICI, many different methods have been proposed,
based on linear equalization, decision-feedback equalization, and
ICI cancellation [4] [5] [6] [7] [8]. All these techniques assume the
knowledge of the channel variation over the whole OFDM block.
Therefore, in the context of ICI mitigation, doubly-selective channel
estimation plays an important role.

In order to estimate a doubly-selective channel, it is compu-
tationally convenient to assume a reduced-rank model of the time
variation of the channel. This model, usually referred to as basis
expansion model (BEM), allows for a parsimonious representation
of the channel, thereby enabling low-complexity estimation of few
parameters by means of least squares and linear minimum mean-
squared error (LMMSE) techniques [9] [10]. Adaptive estimation
and tracking of the BEM parameters by LMMSE prediction and
Kalman filtering have been investigated in [11], [12], [13], and [14].
The Kalman channel estimator minimizes the error covariance and
is therefore MSE-optimal among the unbiased estimators, under the
assumption that the channel and noise covariances are known. How-
ever, in practical mobile applications, statistical information may be
partial, or outdated, or absent. In some cases, the doubly-selective
channel could even be non-stationary, due to frequent changes of
speed or motion direction of a mobile terminal. In these scenarios,
the optimality of the Kalman filter is no longer valid, and alternative
approaches may be preferable.

In this paper, we investigate a minimax approach for robust es-
timation and tracking of the BEM parameters of OFDM doubly-

selective channels. The key idea is to minimize the maximum pos-
sible estimation error in the presence of model uncertainties, such
as the imperfect knowledge of the mobile speed, and of the Doppler
power spectral density of the channel. This criterion leads to an H∞
filter [15], which can be interpreted as a Kalman estimator in a Krein
space [16]. Previous studies about H∞ filtering for OFDM have
been presented in [17], which deals with carrier frequency offset es-
timation, and in [18], which considers slowly time-varying channels.
Specifically, [18] assumes a block-fading model, i.e., a BEM order
equal to one. Differently, we deal with rapidly time-varying channels
with BEM order larger than one. By taking into account the possible
presence of unknown model uncertainties, such as the error covari-
ance of the BEM coefficients, we design an H∞ channel estimator
that turns out to be more robust than the corresponding Kalman filter.
Simulation results in different mismatched scenarios show the effec-
tiveness of the proposed approach. Since the proposed H∞ filter
shares a similar structure with the Kalman filter, the computational
complexity increase is negligible.

The remainder of this paper is structured as follows. Section 2
contains the OFDM system model. In Section 3, we present the H∞
filtering approach for doubly-selective channel estimation. Section 4
compares the H∞ estimator with the Kalman estimator, by means of
simulation results. In Section 5, we conclude the paper.

2. SYSTEM MODEL

We consider a typical OFDM system, where a data block s = [s[0],
⋅ ⋅ ⋅ , s[N − 1]]T is transmitted on N orthogonal subcarriers by the
unitary IDFT matrix FH . A cyclic prefix (CP) of length L equal to
the maximum delay spread of the discrete-time channel is appended
to the IDFT output. The signal undergoes a doubly-selective fading
channel ℎ[n, l] (n is the time index and l is the multipath index),
which models the fast time-varying multipath propagation. After CP
removal, the received vector is reshaped by a time-domain window
w = [w0, ⋅ ⋅ ⋅ , wN−1]

T , which helps to reduce the Doppler effects
[6]. Thus, the received vector zw = [zw[0], ⋅ ⋅ ⋅ , zw[N − 1]]T is
expressed by

zw = DwHTF
Hs+DwnT , (1)

where nT = [n[0], ⋅ ⋅ ⋅ , n[N − 1]]T is an additive white Gaus-
sian noise (AWGN), Dw = diag(w) is a diagonal windowing ma-
trix, and Hw = DwHT is the N × N time-domain channel ma-
trix that stores on the lth lower diagonal the time evolution of the
lth windowed channel tap ℎw[n, l] = w[n]ℎ[n, l], as expressed by
[Hw]n,m = ℎw[n, (n−m)modN ]. In order to simplify the channel
matrix identification, it is common to represent the LTV channel by
a BEM, which approximates the time variation of each channel tap
hT,l = [ℎw[0, l], ⋅ ⋅ ⋅ , ℎw[N − 1, l]]T as a linear combination of a
fixed set of basis functions, as expressed by [19]

hT,l = BhC,l, (2)



where hC,l = [ℎ−Q,l, ⋅ ⋅ ⋅ , ℎQ,l]
T contains the 2Q + 1 BEM coef-

ficients, and B = [¸−Q, ⋅ ⋅ ⋅ ,¸Q] is the N × (2Q+ 1) matrix that
contains the 2Q + 1 BEM basis functions {¸q}. Thus, to identify
the LTV channel, we only need to estimate U = (L + 1)(2Q + 1)
BEM coefficients {ℎq,l} for each OFDM block. In practical mobile
scenarios, it is possible to accurately approximate the real channel
by few basis functions e.g., 2Q+1 ∈ {3, 5, 7}, using heuristic rules
such as Q ≥ ⌈ºD⌉, with ºD = fD/Δf , where fD is the maximum
Doppler spread and Δf is the OFDM subcarrier separation.

There are several possibilities for the choice of the BEM func-
tions, such as polynomials, complex exponentials, and discrete pro-
late spheroidal functions [20]. Among them, we focus on the gener-
alized complex exponential (GCE) BEM [21], summarized by

B = DwBGCET, (3)

where BGCE is defined in [21], and T is a square matrix that makes
the columns of B orthonormal. For instance, T can be chosen to
be upper triangular using T = R̃−1, where Q̃R̃ = DwBGCE

represents the economy-size QR decomposition. In this case, B =
Q̃. Plugging (2) into (1), after some standard matrix manipulations,
the received vector is expressed by

zw =

Q∑
q=−Q

ΛqHqF
Hs+DwnT , (4)

where Hq is a circulant matrix containing the N dimensional vector
[ℎq,0, ⋅ ⋅ ⋅ , ℎq,L, 0, ⋅ ⋅ ⋅ , 0]T and Λq = diag(¸q).

After FFT processing, the receiver observation equation is

y = Fzw = HF s+ nF =

Q∑
q=−Q

CqΔqs+ nF , (5)

where nF = FDwnT is the colored Gaussian noise, Cq =
FΛqF

H is a circulant matrix that represents the frequency-domain
effect of qth basis ¸q , with entries expressed by

[Cq]k,m =
1

N

N−1∑
n=0

¸q[n] exp(−j2¼(k −m)n/N), (6)

and Δq = FHqF
H = diag(FLh̃q) is a diagonal matrix that quan-

tifies the frequency selectivity of the qth basis, where h̃q = [ℎq,0,
⋅ ⋅ ⋅ , ℎq,L]

T , and FL is the matrix containing the first L+1 columns
of the FFT matrix

√
NF. For linear time-invariant channels, Q = 0,

Cq is just a scaled identity matrix, and Δq is a diagonal matrix con-
taining the channel frequency response. On the contrary, for LTV
channels, the channel matrix HF is not diagonal, and ICI is intro-
duced by the discrete-Doppler spread contained in its super and sub-
diagonals. Actually, in realistic LTV channels, the discrete-Doppler
support is practically limited, which means that the frequency-Dop-
pler channel matrix HF is almost banded, and that the out-of-band
values can be neglected. Assuming a one-sided Doppler bandwidth
B, each subcarrier receives ICI from 2B adjacent subcarriers.

In order to estimate the LTV channel, we employ a pilot-symbol-
assisted modulation approach [9]. The known training pilots are
grouped in P subblocks of length LP = 4B+1, and are interleaved
with the information data, as summarized by

s = [d(1)T ,p(1)T , ⋅ ⋅ ⋅ ,d(P )T ,p(P )T ,d(P+1)T ]T , (7)

where d(i) is the ith data subblock and p(i) is the ith pilot subblock.
We split (7) into s = d + p, where the data vector d is zero in the

pilot positions, and the pilot vector p is zero in the data positions. In
addition, we define the pilot-selection matrix S as the P (2B+1)×N
matrix with ones (zeros) in those columns corresponding to the the
central positions of the pilot (data) vectors, thereby obtaining from
(5) the observation vector

ỹ = Sy = Ph+ SHFd+ ñ. (8)

In (8), which is obtained by plugging (7) in (5), P is a known matrix
that depends on the BEM basis functions and on the pilot vectors,
defined as P = SΩ(IU ⊗ p), where Ω = [Ω−Q,0, ⋅ ⋅ ⋅ ,Ω−Q,L,
⋅ ⋅ ⋅ ,ΩQ,0, ⋅ ⋅ ⋅ ,ΩQ,L], Ωq,l = CqFZlF

H , with Zl defined as the
N -size square cyclic-shift matrix with ones on the lth lower diagonal
and zeros elsewhere, and ñ = SnF . In the same equation (8),

h = [h̃T
−Q, ⋅ ⋅ ⋅ , h̃T

Q]
T , (9)

is the U -size vector containing the BEM unknowns such that

Ph = SΩ(IU ⊗ p)h = SΩ(h⊗ IN )p = SHFp. (10)

According to the frequency-domain Kronecker delta (FDKD) pilot
design in [9] and [22], if each training block p(i) contains a sin-
gle nonzero pilot symbol in the middle position, surrounded by 4B
trailing zeros, then the data-induced ICI i = SHFd on the pilot
positions has a very low power. Therefore, in (8), the data-induced
ICI can be neglected or incorporated into the noise term ñ. In the
following, we estimate the (windowed) LTV channel vector

h(w) = [ℎw[0, 0], ⋅ ⋅ ⋅ , ℎw[0, L], ⋅ ⋅ ⋅ , ℎw[N−1, 0], ⋅ ⋅ ⋅ , ℎw[N−1, L]]T .
(11)

3. H∞ FILTERING

In order to estimate the LTV channel, we derive an H∞ filter that
models the evolution of the BEM coefficients in (9) as an autore-
gressive (AR) model of the first order, as expressed by

hk = Akhk−1 + vk, (12)

where k is the time index of the OFDM block, Ak takes into account
the correlation between the BEM coefficients of consecutive blocks,
and vk represents the innovation of the BEM coefficients introduced
in the kth block, with E(vk) = 0U×1, E(vkv

H
k−m) = Qk±[m],

where ±[m] is the Kronecker delta, and E(hkv
H
k−m) = 0U×1.

By neglecting the data-induced ICI in (8), the observation equa-
tion can be expressed by

ỹk = Phk + ñk, (13)

where ñk is a colored Gaussian noise characterized by E(ñk) =
0P (2B+1)×1, E(ñkñ

H
k−m) = Rñ±[m], E(vkñ

H
k−m) =

0U×P (2B+1), and E(hkñ
H
k−m) = 0U×P (2B+1).

The vector to be estimated h
(w)
k , which contains the L+ 1 taps

of the LTV windowed channel in the kth block, is expressed by

h
(w)
k = Lhk, (14)

where L = B⊗ IL+1.
The H∞ filter is designed starting from the cost function

J1 =

M∑
k=1

∣∣h(w)
k − ĥ

(w)
k ∣∣2

Σ−1
k

∣∣h0 − ĥ+
0 ∣∣2M+

0

+
M∑
k=1

∣∣vk∣∣2Qk
+

M∑
k=1

∣∣ñk∣∣2Rñ

, (15)



where ẑk is the H∞ estimate of the LTV channel, Σk is an (L +

1)N -size square matrix that weights the output error, ĥ+
0 is the ini-

tial BEM vector estimate, M+
0 is the U -size square matrix that repre-

sents the reliability of the initial estimate, M is the number of OFDM
blocks, and ∣∣x∣∣G = ∣∣G−1x∣∣2 is the weighted two-norm of x. The
minimization of J1 in (15) is intractable [15], so the H∞ filter is de-
signed to satisfy an user-defined bound, as expressed by

J1 <
1

µ
. (16)

By expressing J1 in (15) as J1 = Ñ/D̃, where Ñ is the numerator
and D̃ is the denominator, (16) is equivalent to

J = Ñ − D̃

µ
< 0, (17)

whose minimax solution is expressed by

ĥ
(w)
k = argmin

h
(w)
k

( max
h0,vk,ñk

J). (18)

This way, the solution ĥ
(w)
k is robust to the worst possible error

caused by a bad initial state h0, a statistical mismatch in the in-
novation vk, and an erroneous assumption on the covariance of ñk.
Actually, the H∞ filter does not attain the minimization of J , but it
guarantees that the bound (17) is satisfied. The H∞ solution can be
obtained using the following equations:

M−
k = AkM

+
k−1A

H
k +Qk, (19)

which is the covariance of the state prediction error, where

M+
k = M−

k (IU + (Γ− µΣ̃k)M
−
k )

−1 (20)

is the covariance of the state estimation error, with Γ = PHR−1
ñ P

and Σ̃k = LHΣkL,

K
(∞)
k = M+

k P
HR−1

ñ (21)

is the H∞ gain that, together with the predicted state

ĥ−
k = Akĥ

+
k−1, (22)

lets to compute the estimated state ĥ+
k by

ĥ+
k = ĥ−

k +K
(∞)
k (ỹk −Pĥ−

k ), (23)

which finally leads to the estimate ĥ(w)
k of the windowed LTV chan-

nel in the kth OFDM block, as expressed by

ĥ
(w)
k = Lĥ+

k . (24)

The mathematical derivation of (19)-(24), which is herein omitted,
can be obtained by Lagrange multipliers method, similarly to [15].

From (16), it is clear that high values of µ reduce the upper
bound of the cost function. However, if µ is too large, the covariance
of the state estimation error M+

k in (20) may lose its nonnegative
definiteness. Therefore, µ should be chosen such that M+

k remains
positive definite for any k. This is guaranteed by choosing [18]

µ <
1

emax,k
, (25)

where emax,k is the maximum eigenvalue of Σ̃k[(M
−
k )

−1 + Γ]−1.

It is worth noting that the H∞ filter has the same structure,
and hence the same complexity, of the well-known Kalman filter.
Specifically, the choice µ = 0 makes the H∞ filter equivalent to the
Kalman filter [15]. Indeed, when µ = 0, the covariance update in
(20) becomes identical to that of the Kalman filter, and therefore the
H∞ gain in (21) is identical to the Kalman gain. However, when µ
tends to zero, the bound in (16) becomes looser, and hence the ro-
bustness to statistical mismatches decreases. Consequently, choos-
ing µ = 0 guarantees the optimal MSE performance only when the
model evolution is perfectly known, i.e., when the estimator has a
perfect knowledge of Ak and Qk. On the other hand, choosing a
nonzero value for µ introduces some robustness when Ak and Qk

are unknown or badly estimated, sacrificing the MSE performance
when Ak and Qk are perfectly known. Clearly, since Ak and Qk

model the evolution of the BEM coefficients, both depend on the
channel statistics, as expressed by

Ak = Rℎcross,kR
−1
ℎ,k, (26)

Qk = Rℎ,k −Rℎcross,kA
H
k , (27)

Rℎ,k = E(hkh
H
k ) = LH(R

(t)
k,Doppler ⊗Rk,Multipath)L, (28)

Rℎcross,k = E(hkh
H
k−1), (29)

where R(t)
k,Doppler is the N -size square Toeplitz matrix whose columns

contains the (windowed) time autocorrelation function of a channel
tap in the kth OFDM block, while Rk,Multipath is the (L + 1)-size
square matrix whose diagonal contains the power-delay profile of
the channel in the kth OFDM block. Therefore, both Ak and Qk

strongly depend on the Doppler power spectral density, and conse-
quently on the maximum Doppler spread fD of the channel.

In case of imperfect knowledge of the channel statistics
Rℎcross,k, Rℎ,k, Rk,Multipath, R(t)

k,Doppler, or in non-stationary envi-
ronments where the statistics are time-varying, the matrices Âk and
Q̂k used by the channel estimator are different from the actual ones.
Therefore, we have to distinguish whether the statistics are perfectly
known at the initialization step (Â1 = A1 and Q̂1 = Q1) or not
(Â1 ∕= A1 and Q̂1 ∕= Q1). In addition, during the tracking phase,
we have to distinguish whether the estimator uses the same matrices
employed for initialization (Âk = Â1 and Q̂k = Q̂1, for k > 1) or
the estimator tracks the matrices after estimation, using the follow-
ing update equations [13]:

R̂ℎcross,k = ¸kR̂ℎcross,k−1 + (1− ¸k)ĥ
+
k ĥ

+H
k−1, (30)

Φ̂k = ¸−1
k Φ̂k−1 − ¸−2

k

Φ̂k−1ĥ
+
k ĥ

+H
k Φ̂k−1

(1− ¸k)−1 + ¸−1
k ĥ+H

k Φ̂k−1ĥ
+
k

, (31)

Âk+1 = R̂ℎcross,kΦ̂k, (32)

v̂k = ĥ+
k − Âkĥ

+
k−1, (33)

Q̂k+1 = ¸kQ̂k + (1− ¸k)v̂kv̂
H
k , (34)

where ¸k is a (possibly time-varying) forgetting factor. Indeed, dif-
ferent choices for initialization and tracking of Âk and Q̂k lead to
different performances.

As a remark, we point out that, differently from the Kalman fil-
ter, the performance of the H∞ filter also depend on the matrix L

that links the LTV channel estimate ĥ
(w)
k to the estimated BEM co-

efficients ĥ+
k (see (24)).



4. SIMULATION RESULTS

We consider an OFDM system with NA = 244 active carriers,
NV = N − NA = 12 zero subcarriers that act as guard frequency
bands, CP length L = 4, QPSK data constellations, and FDKD
pilots [9] with P = 5 subblocks of length 4B + 1 = 9. The
receiver window w has been designed according to the minimum
band-approximation error [8] as the sum of 5 complex exponentials.
The channel estimator employs a GCE-BEM with 2Q + 1 = 5 ba-
sis functions. The LTV channel, which has been generated as in
[23], has a constant power-delay profile of length L + 1 = 5, as
expressed by Rk,Multipath = IL+1, and a Jakes’ power spectral den-
sity of the Doppler dispersion, as expressed by [R

(t)
k,Doppler]m,n =

J0(2¼(m− n)ºD/N)[w]m[w]n. The signal-to-noise ratio, defined
as SNR = (L + 1)E(∣∣s∣∣2)/E(∣∣nF ∣∣2), is equal to 20 dB. The
estimator performance is assessed by means of the normalized MSE
(NMSE) of the windowed channel, defined as

NMSE =
E(∣∣h(w)

k − ĥ
(w)
k ∣∣2)

E(∣∣h(w)
k ∣∣2)

. (35)

Each set of simulations considers the H∞ channel tracking during
the transmission of M = 200 consecutive OFDM blocks, stochas-
tically iterated for 40 channel realizations. We compare the H∞
filter performance versus its Kalman filter counterpart (e.g., µ = 0).
Both filters use a fixed forgetting factor ¸k = 0.995 to update the
statistical knowledge of the AR model according to (30)-(34). The
initial state is assumed as ĥ+

k−1 = 0U×1. The weight matrix used in
the numerator of (15) is Σk = DwD

H
w ⊗ IL+1. The noise covari-

ance matrix Rñ and the power-delay profile matrix Rk,Multipath are
assumed to be perfectly known.

In Fig. 1, the LTV channels is simulated using a maximum
Doppler spread ºD = 0.5. However, the H∞ and Kalman filters op-
erate in a mismatched mode, assuming a maximum Doppler spread
º̂D = ºD/2 at the first OFDM block, and estimating the channel
statistics using (30)-(34) for the successive OFDM blocks. The H∞
filter uses µ = 0.05. Fig. 1 shows that the H∞ filter is more robust
than the Kalman filter to the Doppler mismatch, since it exhibits
both a lower NMSE degradation and a faster update of its channel
statistical knowledge.

Fig. 2 illustrates the effect of the H∞ filter parameter µ, in the
same simulation scenario of Fig. 1. The average NMSE is obtained
by averaging the last 100 OFDM blocks (i.e., from k = 101 to k =
200). It is evident that there exists a single minimum, which is µ =
0.07 for this case. However, there is a significant range where the
H∞ filter outperforms the Kalman filter (characterized by µ = 0). It
should be noted that, for some channel realizations, using µ = 0.2
does not satisfy the bound (25).

In the second set of simulations, after 50 OFDM blocks, the
maximum Doppler spread is suddenly changed from ºD = 0.5 to
ºD = 0.75. The H∞ filter uses µ = 0.04. Both the H∞ and
Kalman filters operate in matched mode at the first OFDM block,
assuming a maximum Doppler spread º̂D = 0.5, and then operate
in tracking mode for the successive blocks. The NMSE performance
in Fig. 3 confirms the behavior of Fig. 1. Anyway, the faster channel
variation grants a faster statistics update by (30)-(34). Consequently,
after convergence, the Kalman filter reaches a lower NMSE, since
it is the LMMSE estimator by design. Noteworthy, the H∞ filter,
which is designed to constrain the maximum error and not the MSE,
in the presence of significant mismatch it is capable to outperform
the Kalman filter also in terms of MSE. For the same simulations set
of Fig. 3, Fig. 4 plots the maximum NMSE and the average NMSE
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Fig. 1. Mismatched maximum Doppler spread.
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Fig. 2. Effect of µ on the NMSE.

for the 40 channel realizations. Fig. 4 clearly shows that the H∞
channel estimator trades off average MSE in matched scenarios for a
significant robustness in maximum MSE (and possibly also average
MSE) in mismatched scenarios. This is a desirable characteristic be-
cause, while a certain average MSE penalty in channel-matched sce-
narios may not significantly influence the OFDM bit-error rate after
channel equalization, a significant reduction of the worst-case MSE
may let the OFDM system to not lose the channel tracking and to not
completely disrupt the service in critical mismatched scenarios.

5. CONCLUSIONS

We have proposed a robust estimator of OFDM doubly-selective
channels based on H∞ filtering. The proposed estimator minimizes
an upper bound on the maximum amount of channel estimation error
that can be committed. Therefore, the proposed approach is suitable
in the presence of mismatches about the statistical knowledge of the
channel. Simulation comparisons have shown that, in case of im-
perfect statistical knowledge, our H∞ estimator produces a superior
tracking performance with respect to a Kalman estimator, with com-
parable computational complexity.
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